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Abstract—Eccentricity severity level estimation is of great
importance in rotary machine fault detection. However, in prac-
tice machine operation conditions may influence the magnitude
of fault signatures, making eccentricity severity estimation a
challenging problem. In this paper, we develop a linear regression
model incorporating multiple fault signature features to esti-
mate the eccentricity severity level of induction machines under
different operating conditions. In particular, the eccentricity
severity level is modeled as a function of operating conditions
and fault signature features including rotating speed, load torque,
vibration, as well as current harmonics, etc, with corresponding
weights to be determined. By imposing sparsity of weights, we
learn from training data which dominant features have relatively
larger impacts on the estimation. Experimental results show that
our trained model exhibits satisfactory accuracy in quantitatively
estimating eccentricity under various operating conditions.

Index Terms—Eccentricity, Fault detection, Induction machine,
Sparsity model

I. INTRODUCTION

Eccentricity is one of the most common faults in rotary
electric machines. For an eccentric machine, the axis of the
rotor is not aligned with the axis of the stator, causing
unbalanced air gap. In the case of the static eccentricity, the
position of the minimal radial air-gap length is fixed in space.
Study report shows that an inherent level of static eccentricity
exists even in newly manufactured machines due to limits of
manufacturing and assembly method [1]. If the rotor-shaft as-
sembly is sufficiently stiff, the level of static eccentricity does
not change. However, since static eccentricity causes a steady
unbalanced magnetic pull in one direction, it may lead to bent
rotor shaft and bearing wear and tear etc. Consequently, some
degree of dynamic eccentricity will develop after long-time
operation, where the position of minimum air gap rotates with
the rotor during operation. Therefore, in reality, both static
and dynamic eccentricities tend to co-exist in old induction
machines [1], [2].

When there exists an eccentricity fault, the unbalanced
air gap between the stator and the rotor causes degraded
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performance such as fluctuated torque and undesired vibrations
[3]. In some situations, a serious eccentricity fault may lead
to insulation damage or even sudden breakdown of the motor
during operations [1]. Therefore, it is of great importance to
detect eccentricity and examine the eccentricity level during
the manufacturing process for motor quality check and to
monitor eccentricity severity during operation for preventive
maintenance.

During past decades, motor eccentricity detection has at-
tracted great attentions in the motor fault detection community,
as summarized in [2], [4]. The most commonly used invasive
method for eccentricity diagnosis is motor current signature
analysis (MCSA) [1], [5]–[8], which aims to detect charac-
teristic frequency components with respective to a certain type
of eccentricity in the frequency spectrum.

For most induction machines with eccentricity fault, the
signature frequency in the current signal is [9]

fecc = ((kR± nd)
1− s
p
± ν)fs, (1)

where fs is the fundamental supply frequency, R is the number
of rotor slots, s is the slip, p is number of pole pairs, k is
any positive integer, nd is the eccentricity order (nd = 0
in case of static eccentricity and nd = 1, 2, 3, ..., in case
of dynamic eccentriciy), and ν is the order of stator time
harmonics. Without the number of rotor slots, a simplified
version is given by [1], [8]

fecc = [1±m(
1− s
p

)]fs = fs ±mfr, (2)

where fr = 1−s
p fs is the rotor frequency related to the

rotational speed.
Besides the conventional MCSA-based methods, researchers

also explored signatures including higher order current har-
monics [10], [11], vibrations [1], [12], stator voltage and
current Park’s vector [13], toque [14], etc. For example,
for principal slot harmonic (PSH) type induction machines,
who have a combination of pole pair number p and rotor
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slot number R that satisfy R = 2p[3(m ± q) ± r], where
m ± q = 0, 1, 2, ... and r = 0, 1, the conventional MCSA-
based method does not work well since there is no significant
dependency between current signals and the eccentricity level.
To deal with this issue, [10] introduces a frequency component
R( 1−s

p + 1)fs for the detection of static eccentricity level.
Other methods such as the magnetic field-based eccentricity

detection are also explored [15]–[17], which aim to examine
the magnitude of characteristic harmonics via analyzing the
spectrum of the stray flux. However, they are not widely
accepted due to the costly installation of sensors.

In contrast to the binary eccentricity detection problem,
eccentricity severity estimation is more challenging due to
its complexity and the influence of operating conditions.
Although a current spectrum-based indicator [18] is proposed
to qualitatively assess the eccentricity level, there is no clear
standardized criteria for quantitative estimation, especially
under varying operation conditions. Based on our experience,
the magnitude of fault signature frequency components may
vary non-linearly, or even inversely proportional to the severity
under certain load conditions. Therefore, it is desirable to pro-
pose a quantitative eccentricity estimation method for practical
operation situations.

To tackle this problem, we propose a learning-based method
that enables eccentricity estimation under different load con-
ditions. We follow the principles of physics-informed machine
learning [19] to steer the learning process towards identifying
physically consistent solutions [20]–[22]. Our contribution
in this paper lies in three aspects. First, we build a linear
regression model of eccentricity severity as a function of
multiple features of torque, vibration, and current harmonics,
etc., with weights to be learned with our training data. Second,
we explore the importance of different features by imposing a
sparsity constraint on weights of extracted features. Third, we
estimate the severity of eccentricity levels under various load
conditions with satisfactory results using our proposed method
and learned model parameters.

II. PROBLEM FORMULATION

Inspired by prior knowledge of the physical model of
induction machines and fault detection methods using dif-
ferent features, we aim to estimate eccentricity severity of
induction machines by a learning-based method incorporating
different eccentricity related features. Assume that we have N
experiments conducted under different eccentricity levels and
various load conditions. For each experiment, we obtain the
eccentricity level, the load condition in torque, and multiple
measurement time series including rotating speed, vibration
acceleration, and three-phase current. By processing the mea-
sured data, we can obtain a feature matrix X ∈ RN×M

and a corresponding vector y ∈ RN×1 of eccentricity levels
represented by

X = [x1, · · · , xM ], (3)

y = [y1, · · · , yN ]T , (4)

where xi ∈ RN×1(i = 1, ...,M) corresponds to the ith

feature and yj ≥ 0 (j = 1, ..., N) is the eccentricity level
defined by

yj =
dj
δ0
× 100%, (5)

where dj is the distance between the actual rotor axis and
the stator axis, and δ0 is the average air gap length in
the corresponding healthy motor. For ideal healthy induction
machines, the rotor and the stator are coaxial, therefore dj = 0.

We model the eccentricity level as a function of operating
conditions such as load, rotating speed, and vibration, i.e., as
well as the current spectral feature

y = Xw + b+ u, (6)

where w = [w1, ..., wM ]T ∈ RM×1 is a weight vector, b ∈
RN×1 is a bias term, and u ∈ RN×1 represents error.

To determine the feature weight vector w, we use training
data set {yT ,XT } to learn our model parameters. Note that
we only have limited data with a number of discrete eccentric-
ity levels in y. To avoid overfitting, we use a regularizer term
on w and formulate the regression problem as an optimization
problem

wT = argminw
1

2
||yT −XTw − b||22 + α||w||1, (7)

where α is a pre-defined coefficient of the regularization term,
b = ȳT1 with ȳT the mean value of yT , and ||w||1 =

∑M
i=1 wi

represents the l1 norm of w. By minimizing the l1-norm regu-
larized objective function [23], we achieve a sparse solution of
w that fits the regression model. Since w is sparse, meaning
only a few non-zero coefficients in w, the corresponding
features play important roles in determining the eccentricity
level.

To solve (7), we consider the augmented-Lagrangian
scheme with penalty parameter ρ and variable µ

L(w, z,µ) =
1

2
||yT −XTw − ȳT1||22

+α||z||1 +
ρ

2
||w − z + µ||22. (8)

We then iteratively update w, z, and µ using the alternating
direction method of multipliers (ADMM) [24]. The detailed
updating process is summarized in Algorithm 1.

Algorithm 1: ADMM for regularized linear regression
model
Input: XT , yT , α, ρ, niter;
Initialization: z ← z0,µ← µ0;
for j = 1, . . . , niter do

wj ← arg minw L(w, zj−1,µj−1),
zj ← arg minz L(wj , z,µj−1),
µj ← µj−1 +wj − zj ,

end
Output: wT = wniter .
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Note that in each iteration, wj has a closed-form solution
which can be computed efficiently as

wj =(XT
TXT + ρETE)−1

[XT
T (yT − ȳT ) + ρET (zj−1 − µj−1)], (9)

where E ∈ RN×N is an identity matrix, and zj can be solved
by a soft-thresholding process as

zj,i =


Eiwj + µj,i − α

ρ if Eiwj + µj,i ≥ α
ρ

Eiwj + µj,i + α
ρ if Eiwj + µj,i ≤ −αρ

0 otherwise,

(10)

where zj,i and µj,i are the ith element of zj and µj , respec-
tively, and Ei is the ith row vector of E. Once we have learned
weight vector wT , we can estimate the eccentricity severity
level using

yt = max(XtwT + ȳT1,0) (11)

with test data feature Xt.

III. EXPERIMENTS

A. Setup

We show in Fig. 1 (a) a picture of our experiment setup
and in Fig. 1 (b) an illustration diagram. To produce different
eccentricity levels, the two original bearings between the rotor
and the stator are taken out. Instead, two larger external bear-
ings are used to support the rotor such that the motor’s static
eccentricity level can be manually adjusted within a certain
range with high accuracy. A magnetic powder brake, whose
torque can be tuned by changing its input operating current,
is used as the load. The whole motor drive system is enclosed
in a clear cage for safety purpose. During operation, multiple
sensors are used to record synchronized time-sequence data: i)
one tachometer measures the rotating speed, ii) two accelerom-
eters record the motor vibration along horizontal and vertical
directions respectively, and iii) three current probes records
the three-phase stator current accordingly.

Experiments are conducted under various conditions of
eccentricity level and load by adjusting the external bearings
and the input operating current of the magnetic powder brake.
For each experiment, given a pair of eccentricity level and
load, we follow three steps: i) shift the bearings that support
the rotor to the eccentricity level under stationary state, ii)
set the input current of the magnetic powder brake to provide
desired load torque, and iii) start the motor and record data
when the motor is running in steady status.

Specifically, we examine 5 different eccentricity levels
in percentage as yj ∈ Y = {0%, 11%, 25%, 43%, 56%}
and 8 different load conditions with torque Tj ∈ T =
{0.0, 0.3, 0.5, 0.9, 1.4, 2.0, 2.7, 3.5} in Nm. Therefore, a to-
tal of 40 experiments, each under a unique pair of eccentricity
level and load, are conducted with operating data collected for
further analysis.

(a) Experiment setup

Rotor

Tachometer

Fixed bearing Fixed bearing

Acceleration sensor rȦ

Powder brake

Three-phased sensors
            Accelorometer

Motor

(b) Illustration diagram

Fig. 1. Experiment setup and its illustration diagram

B. Data processing

To explore the relationship between motor operation fea-
tures and eccentricity levels, we pre-process original measure-
ments to fit the input of our regression model. For each ex-
periment, we collect torque, time sequences of rotating speed,
horizontal acceleration, vertical acceleration, and three-phase
current, each of 60 seconds with a sampling rate of 104Sa/s.
To enrich the training and testing dataset, we first segment
each time sequence of original 60-second measurements into
12 non-overlapped segments, each of 5 seconds, resulting
a total of N = 480 datasets for all 40 experiments. Each
dataset includes load torque, rotating speed, acceleration time
sequence, and three-phase stator current sequences, etc. We
then randomly pick half of the 480 datasets for training and
the remaining half for testing. Data features of each dataset
are extracted with details described as follows.

1) Average Vibration Velocity Calculation: We calculate the
average vibration velocity as one feature, following three steps
below.

• Integrate the vibration acceleration time series Ax and
Ay independently to get the raw vibration velocity time
series, using the function cumtrapz in MATLAB.

• Calculate the cumulative error-caused velocity trend by
the moving average method, where the window size is
set as 10 samples.

• Calculate the average absolute value of the net vibration
velocity based on the detrended vibration velocity on
horizontal and vertical directions.

Specifically, Fig. 2 plots an example of time series of
acceleration measurements and detrended vibration velocity.
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Fig. 2. Examples of (a) time series of acceleration and (b) vibration velocity.

2) Eccentricity-related Stator Current Components Extrac-
tion: As indicated in equation (2), eccentricity-related stator
current components involve the following characteristic har-
monics of current spectrum,

fk = fs + kfr, k = 0, ±1, ±2, . . . . (12)

where fr is the rotational frequency. Considering perturbations
in the actual rotating speed, we approximate the rotor rota-
tional frequency range [fmin

r , fmax
r ] using the average rotating

speed Ω with some tolerance as

fmin
r = (Ω + b1)/Ω0 × (fs/p), (13)

fmax
r = (Ω + b2)/Ω0 × (fs/p), (14)

where Ω0 is the nominal rotating speed, fs is the supply
frequency, p is the number of pole pairs, and b1 and b2 are
pre-defined bias terms to amend the overestimation of the
tachometer. In our case, Ω0 = 1800rpm, fs = 60Hz, p = 2,
b1 = −19rpm, and b2 = −9rpm.

Given the three-phase current, we first perform Fast Fourier
Transform (FFT) on the current time series of each phase
HP = FFT(IP ), where P ∈ {A,B,C} represents one of the
three phases. We then calculate the kth harmonic components
HP
k of each phase in the following way, where we set the

maximum harmonic order k0 = 98 and tolerance band ∆f as
1.5 Hz.

HP
k = max(HP (f)|fmin

k ≤ f ≤ fmax
k ), (15)

where

fmin
k = fs + kfmin

r −∆f,

fmax
k = fs + kfmax

r + ∆f,

k = −1, 0, 1, . . . , k0.

Finally, we calculate the magnitude of the eccentricity-related
current components Hk by calculating the mean of three
phases

Hk = (HA
k +HB

k +HC
k )/3. (16)

Fig. 3 plots examples of the collected time-domain stator cur-
rent data and its corresponding frequency spectrum, showing a
range of rotor frequency harmonics with various magnitudes.
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Fig. 3. Examples of (a) Time series of stator current and (b) Frequency
spectrum of stator current.

To further explore the harmonic magnitude, we plot in
Fig. 4 the magnitude of 30Hz and 90Hz in current spectrum
relative to the 60Hz operating frequency component with
respect to different load conditions. We can observe that the
magnitude may vary greatly with load, especially when the
eccentricity level is relatively low. Therefore, it is not reliable
to estimate the eccentricity severity level according to solely
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the magnitude of 30Hz or 90Hz. It is imperative to have an
eccentricity severity estimation method to incorporate multiple
features appropriately.

(a)

(b)

Fig. 4. Frequency component magnitude of (a) 30Hz and (b) 90Hz w.r.t. load

Consequently, load torque, rotor speed, vibration accelera-
tion, vibration speed, and current spectral features are provided
for further model training and testing. In summary, data pro-
cessing provides vectors of measurements for different experi-
ment settings, including load torque T = [T1, ..., Tj , ..., TN ]T

with Tj ∈ T , rotating speed Ωr, horizontal, vertical and

total vibration acceleration Ax, Ay , and A =
√
A2
x +A2

y

respectively, horizontal, vertical and total vibration speed V x,
V y , and V =

√
V 2
x + V 2

y , respectively, and current spectral
features {Hn}, formulated in feature matrix X as

X = [T ,Ωr,Ax,Ay,A,V x,V y,V ,H−1,H1, ...,Hk0 ].
(17)

All features are normalized to have zero mean and unit
variance to ensure all features are equally weighted without
any prior knowledge. The feature correlation matrix is shown
in Fig. 5. It is clear that acceleration related feature are related
to each other and high order harmonics are also closely related

to each other, which promotes the necessity of using sparsity-
driven regression to avoid overfitting.

C. Algorithm Implementation and results

We implement Algorithm 1 in Matlab, with the pre-defined
parameter α = 10, ρ = 10, initial values µ0 = 0, z0 = 0,
and the number of training iterations niter = 103.

A plot of the sparse weights learned from our training data
is shown in Fig. 6. We notice that 90Hz frequency component
plays a dominant role in the severity level estimation. Besides
the 90Hz frequency component, other features such as vibra-
tion and some high order harmonics also contribute to the final
estimation. This agrees with literatures that use vibration and
high-order harmonics for eccentricity detection.

The estimation results on the test dataset using trained
model as well as the true eccentricity severity levels are shown
in Fig. 7. We observe that our estimates of eccentricity levels
match the true eccentricity setup well across all different load
conditions.

Fig. 5. Feature correlation matrix

Fig. 6. Feature weights

Authorized licensed use limited to: Texas A M University. Downloaded on December 20,2022 at 20:25:07 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Eccentricity severity level estimation under various load conditions.

To quantify the model performance, we take the coefficient
of determination [25] as the accuracy metric, which can be
calculated as

R2 := 1−
∑
i(yi − ŷi)2∑
i(yi − ȳ)2

, (18)

where yi represents the real value of the ith sample, ŷi
represents the estimated value, and ȳ represents the mean
of real values of all samples. We achieve the coefficient of
determination value R2 = 0.981, which is very close to the
ideal value 1 when all estimates are exactly the same as the
corresponding true eccentricity levels.

IV. CONCLUSION

We proposed a sparsity-driven linear regression model for
induction machine eccentricity severity estimation under var-
ious operating conditions. By imposing sparsity, we explored
important signatures that play important roles in severity
estimation. Our experimental results validate the proposed
model in quantitatively estimating eccentricity under various
operation conditions with satisfactory accuracy.

.
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