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ABSTRACT | This article presents a use-inspired perspective

of the opportunities and challenges in a massively digitized

power grid. It argues that the intricate interplay of data avail-

ability, computing capability, and artificial intelligence (AI)

algorithm development are the three key factors driving the

adoption of digitized solutions in the power grid. The impact

of these three factors on critical functions of power system

operation and planning practices is reviewed and illustrated

with industrial practice case studies. Open challenges and

research opportunities for data, computing, and AI algorithms

are articulated within the context of the power industry’s

tremendous decarbonization efforts.
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NOMENCLATURE
AC Alternating current.
AI Artificial intelligence.
DC Direct current.
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DER Distributed energy resource.
EMS Energy management system.
EV Electric vehicle.
PV Photovoltaic.
SCADA Supervisory control and data acquisition.
AGC Automatic generation control.
SE State estimation.
RTU Remote terminal unit.
DMS Distribution management system.
SSA Static security analysis.
DSA Dynamic security analysis.
FTR Financial transmission right.
UC Unit commitment.
ED Economic dispatch.
OPF Optimal power flow.
LMP Local marginal price.
IBR Inverter-based resource.
IoT Internet of Things.
PMU Phasor measurement unit.
DFR Digital fault recorder.
SOE Sequence of events.
AMI Advanced metering infrastructure.
FDR Frequency disturbance recorder.
CEII Critical energy/electric infrastructure

information.
HIL Hardware-in-loop.
GPU Graphics processing unit.
ASIC Application-specific integrated circuit.
BLAS Basic linear algebra subroutine.
MIO Mixed integer optimization.
ARX Autoregressive with exogenous input.
PCC Point of common coupling.
NN Neural network.
SMT Satisfiability modulo theory.
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RPCA Robust principal component analysis.
RL Reinforcement learning.
MDP Markov decision process.
HVAC Heating, ventilation, and air conditioning.
RIC Residential/industrial/commercial.
ELM Extreme learning machine.
LSTM Long short-term memory.
CNN Convolutional neural network.
KNN K-nearest neighbors.
PCA Principal component analysis.
SVR Support vector regression.
RF Random forest.
SVM Support vector machine.

I. I N T R O D U C T I O N
Digitization of the electric power grid, which broadly
refers to the deployment of sensing, communication, and
computational capabilities, has been an integral part of
the electrification process over the past century and is a
key enabling factor that drives power grid transformation
by spreading its outreach vertically over plants, transmis-
sion grids, distribution grids, and end-use customers. As
data availability and computing capacity continue to grow,
large-scale power grids are built and operated with very
high levels of reliability and efficiency, providing electricity
services to billions of customers. The state of today’s power
grids in the United States (U.S.) can be summarized in
three aspects: 1) for system reliability, the average duration
of annual electric power interruptions in the U.S. is varied
from 3 to 8 h in the period between 2013 and 2020 [1];
2) for the cost of electricity, the average wholesale elec-
tricity price across the U.S. is varied from $30 to $60
per MWh in the period between 2016 and 2021 [2]; and
3) for carbon footprint, electricity generation in the U.S.
produced an average of about 0.4 kilograms of carbon
dioxide emissions per kWh in 2020 [3].

In response to climate change, which has emerged
as a global concern, rapid decarbonization is impera-
tive to reduce carbon emissions, a quarter of which are
contributed by the electricity sector. It is foreseeable
that numerous decarbonization measures will cause pro-
found changes in the electricity sector in the next few
decades [4]. Such changes have two major drivers: 1) the
energy portfolio transition from high-carbon to low-/zero-
carbon generation sources, such as hydrogen, nuclear,
wind, and solar-based commercial generation units and
DERs and 2) electrification in other sectors, including con-
struction, transportation, and other infrastructure systems.
Deepening penetration of intermittent resources, such as
wind farms and solar PV, is introducing more variability
and uncertainty. The proliferation of power electronics-
based inverters is changing system dynamic characteristics.
Increasing numbers of DERs at the grid edge are strength-
ening the interaction between transmission and distrib-
ution systems. The rapid expansion of EVs will lead to
substantial changes in electricity demand patterns. There-
fore, it is imperative for the grid operators to adopt a more

flexible and risk-aware approach. Given the massive data
availability and computing capacity provided by digitized
power grids, data-driven AI methods are feasible solutions
for complementing traditional model-based approaches to
address these complex emerging challenges.

From a broader economic perspective, AI has trans-
formed a variety of domains over the past decade [5],
including language processing [6], speech recognition [7],
facial recognition [8], real-time object detection [9], mul-
tiplayer game [10]–[12], recommendation system [13],
intelligent robotics [14]–[16], driving assistant sys-
tem [17], disease diagnosis [18], drug discovery [19],
finance [20], and others. We attribute such unprecedented
success of AI as an intricate interplay between three
factors, namely, massive data acquisition, high comput-
ing performance, and advanced AI algorithms [21]–[23].
The availability of data from heterogeneous resources
has been increasing at an unprecedented rate [24]–[26]
and provides fuel for developing AI-based, data-driven
applications for valuable knowledge extraction in wide-
range domains. In addition, remarkable improvements in
computing performance have enabled a variety of practical
large-scale AI models, credited to the collective advances
in hardware, software, and computing architecture [27].
Alongside rapidly growing AI infrastructure that provides
massive data and computing capacity, numerous advanced
AI algorithms have been developed in the past decade.
State-of-the-art performance on benchmark datasets for
tasks in multiple research fields has been improved by
pretrained models [28]–[31] and novel AI model architec-
tures [32]–[35].

Given the widespread success of AI applications, the
development and deployment of interpretable, robust,
and scalable AI may help to accommodate the emerging
changes brought by decarbonization, aiming to reduce car-
bon emission and meanwhile “keep the lights on” in a reli-
able and economic way (see Fig. 1). However, to facilitate
the process toward decarbonization, many open questions
persist in implementing practical AI approaches in digi-
tized power grids, including domain-agnostic computing
and AI advances, use-inspired AI algorithm development,
and cyber–physical security and privacy in a massively dig-
itized power grid. To this end, this article aims to provide
a comprehensive review of the state-of-the-art practice of
power grid digitization transformation, which focuses on
three backbone factors: data, computing, and algorithms.
Specifically, this article provides a review of the recent
progress in data acquisition, computing capability, and AI
algorithms that are applicable to power systems. Successful
industry use cases are introduced to illustrate applications
of AI algorithms on large real-world datasets.

The rest of this article is organized as follows. Section II
provides an overview of power grid operation and plan-
ning practices, as well as the challenges posed by decar-
bonization. Sections III–V provide a comprehensive review
of data, computing, and algorithmic advances in power
systems. Section VI provides an industry perspective on
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Fig. 1. Trifactors of digitization are enabling technologies that

facilitate the process toward power grid decarbonization while

simultaneously meeting requirements in the aspects of reliability,

cost of electricity, and carbon emission, while power grid

decarbonization steers use-inspired development of power grid

digitization.

AI adoption. Finally, Section VII concludes this arti-
cle with remarks on future directions for power grid
modernization.

II. P H Y S I C A L A N D M A R K E T
O P E R AT I O N S O F P O W E R S Y S T E M S
Modern power grids are being driven by the strong
momentum of decarbonization [36] with decentralization
and transportation electrification. Fig. 2 shows the brief
conceptual diagram of a modern power grid, which can
be separated into transmission and distribution systems.
Transmission systems refer to bulk systems that have volt-
ages higher than 66 kV and consist of generation, substa-
tion, and transmission lines, which are usually operated
by state-wide or cross-state system operators. Distribution
systems refer to close-to-users systems that have voltages
lower than 33 kV and connect to residential, commercial,
and industrial loads, which are usually operated by local
utility companies. Power grid decarbonization is changing
the energy portfolio in terms of generation resources, such
as increasing commercial-size solar PV and wind farms in
transmission systems, and DERs, such as rooftop solar PV
in distribution systems. Power electronics-based inverters
are, thus, being deployed to convert electricity by renew-
ables from dc to ac. Transportation electrification intro-
duces a rapidly expanding number of EVs into distribution
systems.

The modern power system operations in high-voltage
transmission systems can be broken down into two cat-
egories [37]. The first category is physical operations
that are responsible for the grid’s physical security1 and
resource adequacy2; the second concerns market opera-
tion. Both physical and market operations are summarized
in Fig. 3.

1Physical security in power systems refers to the ability to resist
contingency disturbances, such as a transmission line short circuit and
loss of system components.

2Resource adequacy in power systems refers to the ability to supply
electricity that accommodates load variation, renewable uncertainty, and
system component outages.

A. Functions of Physical Operation and Planning

Power system operation and planning fulfill the reliabil-
ity of power systems via multiple functions including real-
time monitoring, control, protection, and system reliability
analysis. A system-wide monitoring system collects and
processes measurements, and presents intuitive informa-
tion to system operators via visualization and alarming.
A control system performs control actions either man-
ually or by automated procedures. A protection system
executes prescribed corrective measures upon detection of
anomalies within targeted system components, which is
achieved mainly by local sensors and actuators. Reliability
analysis provides instructions on decision-making of multi-
ple time horizons to guarantee the system within adequacy
and security criteria.

Load and renewable forecasting provides input for both
system and market operation by estimating uncertain net
load and renewable generation of various projection hori-
zons. Load forecasting covers various prediction horizons
spanning hours, days, weeks, months, and years ahead,
whereas renewable forecasting provides only hours and
days-ahead predictions. In real-world power grids, short-
term load forecasting typically has high accuracy, and
renewable forecasting also has acceptable errors that can
be mitigated by the real-time operation of dispatchable
resources.

Real-time monitoring and control are implemented
mostly by EMS in the control center, the primary func-
tional modules of which mainly include SCADA, SE, and
AGC. The SCADA system fulfills measurement acquisition
and control telemetry through communication channels
between the control center and RTUs, at the respective
electrical station or device. Typically, the data acquisition
function collects measurements every 2–10 s, of which the
data stream is a key enabling factor for realizing other
functionalities, such as SE, real-time control, UC, and ED.
For accurate situational awareness of the system’s cur-
rent operation, function SE provides the steady-SE of sys-
tem variables that are not directly observed in streaming
SCADA data. As one of the major real-time control, primary
and secondary generation controls are implemented to:
1) regulate load frequency and 2) balance power genera-
tion, load demand, and cross-area interchange in real time.
Droop-based generator governors that are responsible for
primary control perform instantaneous power quality cor-
rections before triggering protection relays. AGC, consid-
ered a secondary control, mitigates unavoidable errors of
primary control by sending commands from the control
center to participating generation units every 2–4 s [38].
Real-time protection is mainly implemented by protective
relays that are equipped with critical assets, such as gen-
eration units and substations. In high-voltage transmission
systems, protective relays should clear faults within several
cycles3 to avoid further system deterioration. Similarly,
a DMS enables real-time monitoring in the distribution

3One cycle of a 60-Hz electric power system is about 16 ms.
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Fig. 2. Conceptual diagram of a modern power grid, consisting of transmission and distribution systems. The high-voltage transmission

system consists mainly of generation, substation, and transmission lines. The low-voltage distribution system supplies electricity to

residential, commercial, and industrial loads. Decarbonization has promoted utility-scale renewable generation, DERs, and EVs while

reducing investment in thermal generation. Digitization has contributed to the reform and upgrade of control centers through the

development of cloud data storage and computing, and the deployment of massive digitized sensors across the grid.

system, with a few similar functions to EMS, such as
SCADA and event analysis [39]. It is worth noting that
most field devices in the distribution systems are manually
operated rather than remotely controlled, indicating a
lower level of automation compared to the transmission
system.

System reliability analysis entails adequacy, static secu-
rity, and DSA [23], [40], [41]. Security analysis focuses
on the process of system state transitions initiated by rea-
sonable disturbances, such as short circuits and loss of sys-
tem components. SSA evaluates the viability of postevent
equilibrium by calculating power flow or OPF to check
whether a power or voltage violation happens after an
N −1 contingency.4 DSA evaluates the ability of the system
to transition from one equilibrium to another postevent
equilibrium within security criteria [23] by simulating on
system dynamic models. Adequacy analysis quantifies the
system’s capacity for sustainable supply that accommo-
dates load variation, renewable uncertainty, and system
component outages by several manually defined indices.
A typical method for adequacy and security analysis is
numerical simulation. Due to time intensity, these relia-
bility analysis methods tend to be impractical for real-
time security control during contingencies. SSA and DSA
are used in short-term scheduling, such as generation
scheduling, which is performed daily or every few hours.
Adequacy analysis and SSA are typically used for mid-term
planning, such as facility maintenance, which is performed
every several months to one year. Also, both adequacy and

4The N − 1 contingency refers to the loss of a single system
component, such as generation outage and transmission line tripping.

security analysis are used for long-term planning, which
occurs annually or every few years.

B. Functions of Market Operation

Market operation in wholesale electricity markets aims
to maximize social welfare while obeying physical con-
straints. Wholesale markets comprise day-ahead and real-
time energy markets, capacity markets, FTR markets,
and ancillary service markets. Both day-ahead and real-
time energy markets determine clearing prices based on
bids from market participants, incorporating physical con-
straints and potential restrictions. Capacity markets ensure
long-term system reliability. FTR markets entitle market
participants to offset potential losses (hedge) related to
the price risk of delivering energy to the grid. Ancillary
service markets provide regulation and reserve. UC and
ED are two major security-constrained, bid-based mech-
anisms to handle the scheduling of generation and the
management of system congestion. Both UC and ED are
typically formulated as large-scale nonlinear/linear pro-
gramming problems, known as OPF. Providing forecast
load and renewable as input, the UC function determines
when and which generation units startup and shut down in
day-ahead markets. The ED function calculates the power
output of each committed generation unit and associated
LMPs. ED is performed to meet the day-ahead hourly
forecast load in day-ahead energy markets and to meet the
minute-ahead forecast load every 5–10 min in real-time
energy markets [42].

In today’s distribution grids, the retail market contains
few centralized operations or scheduling functions, such as
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Fig. 3. Structure of physical and market operation in transmission systems.

UC and ED, in the retail market. Given the proliferation of
DERs in distribution grids, such as distributed generation,
interruptible load, and electricity storage, the retail market
will involve system upgrades and reforms in the future
to accommodate DER market participation and establish
an appropriate mechanism of scheduling and compensa-
tion [43].

C. Challenges of Decarbonizing Power Grid

Renewable integration and transportation electrification
at scale impose challenges on the paradigm of protection
and control. The emergence of massive grid-following
and grid-forming inverted-based resources (IBRs) may
challenge the effectiveness and efficiency of the current
central control frame due to the unknown impacts of
electromagnetic dynamics and low inertia. DERs at the grid
edge may create bidirectional power flows that potentially
incur malfunctions of the protective relays in distribution
grids. Besides, typical methods for adequacy and security
analysis are numerical simulations that highly rely on grid
models of multiple time scales, including electromagnetic
dynamic (very fast), electromechanical dynamic (fast),

and steady state (slow). However, system characteristics
are being changed due to the proliferation of inverter-
interfaced renewable resources and EVs in modern power
grids, such as low inertia and deeper integration of trans-
mission and distribution systems. These emerging system
characteristics create a need for new requirements on the
existing models to determine whether the system is within
critical security criteria. For example, there is an urgent
need for the study of several topics in order to handle the
growing system complexity, including: 1) electromagnetic
transient models to reveal the fast dynamics by power
electronic-based system components; 2) system-level joint
simulation between transmission and distribution mod-
els to reveal the increasing cross-system interaction; and
3) cross-domain electricity-transportation models to incor-
porate the impacts of transportation networks on EVs.

The market operation also faces the challenge of man-
aging potential market risks resulting from the variability
and stochasticity of renewable generation [44]. Strong
uncertainty is a key obstacle to ED to: 1) maintain sys-
tem stability as tertiary frequency control and 2) avoid
unexpected renewable curtailment to the greatest possi-
ble extent to achieve decarbonization. Current wholesale
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markets may not be sufficiently prepared to accommodate
increasingly frequent extreme weather events, such as the
2021 Texas power outage event [45], to prevent spiking
prices and mitigate energy scarcity. Specifically, strong
uncertainty regarding system net load and intermittent
renewables generation in future grids will raise severe
challenges for the accuracy and robustness of short-term
load and renewable prediction. Deepening transportation
electrification may also undermine the existing end-use
and econometric models for medium and long-term load
forecasting [46].

The distribution system also faces a growing number of
facility challenges. Aging power lines may limit the maxi-
mum use of renewable energy sources, such as wind farms
and utility-scale solar, especially in less populated areas
where large renewable energy installations are located.
The utilization and availability of DERs installed in densely
populated areas can be affected by frequent localized out-
ages intermittently that may be recognized by the control
center. Given stronger integration and correlation between
transmission and distribution grids, facility outages, such
as transformer failures, may cause wider impacts. Further-
more, in aiming to establish a competitive retail market
in the distribution system, there multiple critical problems
remain unsolved, such as LMP calculation and demand
response modeling; however, these are beyond the scope
of this article.

Overall, the profound changes by decarbonization are
posing and will continue to pose numerous challenges to
all aspects of physical reliability and economics. Given
massive data acquisition as the “fuel” and high computing
power as the “engine,” applying advanced data-driven
AI-based approaches as an “autopilot” has the potential
to steer the vehicle forward in a flexible and risk-aware
manner.

III. D ATA A C Q U I S I T I O N I N D I G I T I Z E D
P O W E R G R I D S
In broad industry sectors, large-volume and heteroge-
neously structured data have been generated at an
unprecedented rate by diverse resources since 2010
[24]–[26], such as IoT records, social media, smart
devices, and healthcare systems. The availability of such
tremendous volumes of data has facilitated numerous
applications of valuable knowledge extraction in sec-
tors [47], such as spanning manufacturing [48], healthcare
[49], government [50], retail [51], and infrastruc-
ture [52]–[54]. In particular, numerous high-quality open-
source training datasets [55] have been created to boost AI
research in the aspects of model training, testing, calibra-
tion, and benchmarking.

Moving with the tide of digitizing power systems, the
explosive growth of data resources has also created mas-
sive volumes of data in heterogeneous formats, including
electrical measurements that span across grids vertically,
such as sensors installed on grid-level components, smart
meters, and smart appliances, as well as nonelectrical

measurements, such as weather, social media, traffic, and
geographic information [56]. These data have proven very
valuable in many use cases, such as asset assessment, oper-
ation planning, real-time monitoring, and protection [57].
It is worth noting that these basic functionalities have
distinct requirements for data quality in perspectives of
data accuracy, latency, and sampling rate [58]. This section
will review data acquisition approaches for electrical mea-
surements in the power grids.

A. Real-World Measurements in Power Systems

1) Sensors in Transmission Systems: SCADA systems,
which have played an important role in transmission sys-
tem operation, are capable of collecting facility informa-
tion and sending control signals, which are implemented
by the critical component (i.e., RTUs). SCADA systems
collect asynchronous data on bus voltage magnitude, and
active and reactive power flows; the typical reporting rate
is merely one sample per 2–6 s. The wide-range acqui-
sition of SCADA data has facilitated remote monitoring
and system operation automation. For example, the EMS
at the control center is capable of estimating physical
state variables that are not directly observable based on
SCADA data alone. However, due to increasing system
complexity and uncertainty, even this successful SCADA-
based application is becoming inadequate.

PMUs have been deployed in the bulk transmission grid
at an accelerated rate after the 2003 U.S. blackout [59].
PMUs are able to measure the voltage phasors5 at the
installed bus (typically substations) and current phasors of
the lines connected, along with synchronized time stamps,
for which the typical reporting rate is 30 or 60 samples
per second. Compared to SCADA, PMUs’ high accuracy of
time stamps and sensing, low latency, and a high sam-
pling rate of PMU benefit basic functionalities to different
degrees [60]: 1) more real-time control and protection
applications become potentially implementable due to all
of these advantages, such as remedial action schemes,
including grid islanding and short-term stability control;
2) online system security analysis, such as disturbance
detection and situational awareness, can be significantly
improved due to low latency; and 3) system adequacy
analysis for long-term planning, such as model calibration,
can be improved due to high accuracy. However, it is
worth noting that, due to several factors, such as high
costs and time consumption of installation, only around
2500 production-grade PMUs have been installed across
the North America transmission power grid [61], [62].

DFRs capture and store transient data and SOE data
that can be used for various purposes, such as protection
scheme monitoring and fault diagnosis, which tend to
be implemented offline. DFRs have three typical record-
ing mechanisms: steady-state, low-speed, and high-speed

5Phasors contain magnitude A and phase angle φ of sinusoidal
waveforms that can be expressed as Asin(χt+φ), where χ is 2π × 60
rad/s in a 60-Hz system.
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disturbance recording modes. The disturbance recording
modes are usually triggered by signals from protection
relays. The steady-state recording mode captures the min,
max, and mean values of phasors at a low sampling rate
of one sample per 10 s to 1 h. The low-speed disturbance
mode aims to provide phasor-domain information of long-
and short-term disturbances at a sampling rate of one
sample per one to ten cycles. The high-speed disturbance
mode aims to record instantaneous time-domain voltage
and current measurements of transient faults at a sampling
rate of hundreds of samples per cycle.

2) Sensors in Distribution Systems: The rapid expansion
of AMI meters at the grid edge has created massive
amounts of residential electricity consumption data, typ-
ically at a rate of one sample every 1–5 min. For example,
the Pacific Gas and Electric Company collects more than
3 TB of power data from nine million smart meters across
the grid in the territory, and the State Grid Corporation of
China collects 200 TB of data per year [63].

SCADA in distribution systems has facilitated remote
monitoring and automated operation in multiple aspects,
such as substation, feeder, and end-user load control. In
substation systems, SCADA gathers data, including volt-
age magnitude, current magnitude, and binary status of
facilities, such as switches, breakers, and transformers. In
typical feeder systems, SCADA facilitates the collection of
historical data from the feeder status of devices such as
controlled load break switches and reclosers. In end-user
load, SCADA collects all meter data from the end-users.

The FDR, one of the representative PMU applications
in distribution systems, is a GPS-synchronized single-
phase PMU at ordinary 120-V wall outlets. FDRs have
the advantages of low cost and high deployability; they
can be deployed even at residential households and cam-
puses [64]. Using hundreds of FDRs that have been strate-
gically placed across the U.S., the frequency monitoring
network FNET/GridEye [65] is able to provide visualized
nationwide frequency monitoring.

B. Artificially Generated Power System Data

Artificially generated data are commonly used for power
system research for two major reasons: 1) most real-world
operational data are protected by policies such as CEII
owing to confidentiality and 2) real-world measurement
datasets of high-impact events are usually insufficient for
data-driven model training due to the reliability of real-
world power grids, which ensures that high-impact events
are rare. Alternatively, artificial data generation methods
facilitate the gathering of arbitrary numbers of data sam-
ples under varying scenarios and conditions, including
voltage, current, frequency, and even machine inner state
measurements across grid models.

1) Model-Based Simulation: Model-based simulation is
one of the most common data acquisition approaches for
research and education purposes. Simulation models of

Fig. 4. Number of AI/ML/DL papers per simulation model of various

system scales. Note that we only count typical open-source

simulation models, including IEEE standard test cases and

large-scale synthetic grids using Google Scholar advanced search

among IEEE Transaction papers from 2016 to 2021.

transmission and distribution systems can be categorized
into two major types: 1) small-scale standard systems
and 2) large-scale synthetic systems, which are available
at [66]. The IEEE standard test systems are typically used
for investigations such as algorithm assessment and power
system analysis. Researchers have recently contributed to
the creation of large-scale synthetic grid models [67] that
possess realistic system characteristics. These large-scale
synthetic grids have been used for analysis such as macro-
scope energy portfolio transition [68], [69] and quantita-
tive assessment of measures against extreme events [70].
For intuitive impression, we show the “popularity” of
simulation models in Fig. 4 by counting the number of
corresponding IEEE TRANSACTION papers,6 which are used
for both machine learning model training and testing. It is
clear that the most commonly used models for AI algorithm
training, testing, and calibration are the IEEE 39-bus and
118-bus systems, whereas the large-scale models are rarely
adopted. Please refer to Tables 2–5 for other simulation
models that are not included in Fig. 4.

2) Hardware Test Bed: The development of HIL simula-
tors has been used to support various types of research,
including event detection, situational awareness, wide-
area monitoring and control, and cybersecurity [71].
HIL leverages the interface between a real-time software
simulator and a hardware system to enable closed-loop
control [72]. HIL may play an important role in elec-
tromagnetic transient simulation of electronics-rich power
grids because of its ability to represent realistic very-fast
dynamics.

6We use the Google Scholar advanced search to count IEEE TRANS-
ACTION papers from 2016 to 2021, using several keywords, such
as “IEEE TRANSACTIONS on,” “machine learning,” “#-bus system,”
“power flow,” and “transient.”
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This section gives an overview of data acquisition
approaches in today’s electric power grids. The rapid
expansion of advanced sensors across systems and the
development of simulation have facilitated massive data
acquisition spanning multiple spatial and temporal scales,
and have further accelerated practical data-driven applica-
tions. Efforts to explore data-driven innovation, such as big
data hubs [73], [74], have also promoted data-intensive
research in the power system industry, as well as academia
and education. Despite these advances, there are several
key challenges regarding the data for AI algorithms. First,
in contrast to numerous datasets that have benefited broad
AI communities, the lack of publicly accessible high-quality
power datasets may be impeding the advancement of
AI research in power systems. For example, insufficient
data representativeness is one of the decisive factors for
data-hungry AI methods. Real-world measurements can-
not provide a sufficient volume of publicly available data
due to confidentiality rules and strong grid reliability.
Randomly sampled scenarios in simulation can generate
massive amounts of data, but they do not necessarily
guarantee representativeness; therefore they likely lead
to unexpected training biases, which was demonstrated
by the example of ACOPF scenario generation [75]. Sec-
ond, the feasibility of the proposed AI algorithms may
be constrained by the current data acquisition system, as
indicated by the data quality requirements of major power
system applications [58]. For example, limited and inap-
propriate placement of high-sampling sensors that deter-
mine situational awareness for a specific task may confine
advanced analysis and control, including, but not limited
to, practical applications of AI methods. Third, although AI
methods may offer unique creativity given cross-domain
datasets, they require deep interdisciplinary knowledge
and collaboration to identify useful combinations of het-
erogeneous datasets, which has been demonstrated by few
AI-based canonical studies, such as automatic classification
of distribution grid phases by camera imaging [76] and
comprehension COVID impacts on power sectors by mobile
phone location data [77].

IV. C O M P U T I N G I N D I G I T I Z E D
P O W E R G R I D S
Given sufficient available data resources, the implemen-
tation of data-driven applications in modern power grids
faces computational burdens derived from large-volume,
heterogeneous data. Such implementation is critical to
handle the associated challenges that include data stream-
ing storage, querying, and processing. This section will
give an overview of state-of-the-art computing that has
facilitated general AI and will then introduce data stream-
ing management systems and data processing platforms
[63], [78] in power systems.

A. Overview of State-of-the-Art Computing for AI

The remarkable improvement of computing perfor-
mance is the key factor in the proliferation of AI, which

is attributable to advances in hardware, software, and
generic algorithms [27]. Quantum leaps in computing
performance have yielded a variety of practical large-scale
AI models, among which the amount of computation for
model training has been increasing exponentially with a
3.4-month doubling period [22], [79]. The rapid progress
of hardware computing resources has been the main driver
behind the development of AI models. Of particular note,
the emergence of general-purpose GPUs [80] and AI accel-
erator ASICs, such as [81]–[84], is capable of dramatically
accelerating AI model training. In addition, AI-tailored
software has been developed to exploit hardware com-
puting resources [85]. For instance, BLAS libraries, which
were created decades ago [86]–[88], have been used
to optimize common linear algebra operations that are
recursively executed in deep NNs [89]–[92]. In particu-
lar, Nvidia GPUs, which are widely supported by main-
stream deep learning framework [93]–[95], have a highly
optimized library cuDNN [96] enabling high-performance
GPU acceleration. The progress of generic algorithms has
also improved computing performance, exhibiting enor-
mous heterogeneity on problems of different types and
sizes [97]. It is worth noting that some large-size prob-
lems benefit just as much or even more from algorithmic
improvement than from Moore’s law. For instance, the total
speedup of solving MIOs was 2.2 trillion times during
the 25 years between 1991 and 2016 [21], of which a
factor of 1.6 million is due to hardware speedup from
59.7 GFlop/s in 1993 to 93.0 PFlop/s in 2016; another
factor of 1.4 million is due to software and algorithmic
speedup from CPLEX 1.2 in 1991 to Gurobi 6.5 in 2015.

B. Data Management Platforms in Power Grids

Because power system security highly relies on real-time
system operation and control, it is challenging to store and
process real-time data streaming effectively and efficiently.
Therefore, the building of real-time data streaming sys-
tems that mainly influence data latency is critical for the
subsequent online data-driven applications, including, but
not limited to, AI-based methods. In contrast to traditional
database management systems that use statistical data
storage, data stream management systems usually store
synopsis data (instead of the entire dataset) via processing
in order to handle frequent queries and data updates.
We illustrate several of the most popular data stream
management systems summarized in [63]: Aurora [98] has
a good balance of accuracy, response time, and resource
utilization; TelegraphCQ [99] is mainly used for sensor
networks, which involves a front end, sharing storage, and
a back end; and STREAM [100] has the advantage in
situations of limited resources in that it can execute queries
with high efficiency.

In particular, big data management platforms are
being developed to accommodate multimodal data stor-
age and processing of unstructured heterogeneous data.
Hadoop [101] and Spark [102] are two representative

8 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



Xie et al.: Massively Digitized Power Grid: Opportunities and Challenges of Use-Inspired AI

open-source designs for distributed data management.
Hadoop is able to process massive heterogeneous data
efficiently and economically by taking advantage of a
programming model [103], a distributed file system [104],
and a distributed data storage system [105]. Spark, on
the other hand, leverages the technology of resilient dis-
tributed datasets [106], which is more suitable for recur-
sive computational operations in machine learning-based
applications. In terms of data management platforms that
are suitable for power systems, several cases of solutions
have been successful in facilitating energy efficiency. For
example, CenterPoint Energy has handle streaming mes-
sages from intelligent grid devices and smart meters using
an IBM-developed platform to improve system reliabil-
ity [107]. For its part, Oncor Energy Delivery has devel-
oped AMI data-based predictive maintenance to reduce
outages and guarantee sustainable supply enabled data
platforms [108].

Because of power grid digitization, computing tasks
in today’s power grids have been shifted and evolved
to centralized clouds. Advanced computing power, along
with massive data acquisition, has enabled many time-
sensitive operations, such as real-time monitoring and
security analysis. However, with the increasing complexity
of power grids, such a computing paradigm may face
several challenges, such as privacy concerns and commu-
nication bandwidth limits. In contrast, edge computing
that leverages computing resources at the edge has the
potential to improve computation efficiency and protect
data privacy by performing data analytics close to cus-
tomers [109]. Particularly, machine learning approaches
that can preserve privacy, such as federated learning [110],
have drawn increasing attention.

V. A I S O L U T I O N S T O P O W E R G R I D
D E C I S I O N - M A K I N G
This section surveys recent AI solutions to the core
decision-making processes in power grid operations. We
report 85 papers, most of which were published in the
IEEE TRANSACTIONS of the Power and Energy Society (e.g.,
IEEE TRANSACTIONS ON POWER SYSTEMS and IEEE TRANS-
ACTIONS ON SMART GRID) from 2019 to 2021. For earlier
works about AI algorithms for grid operations, we refer
readers to previous survey papers [23], [111]–[113]. Table
1 classifies the approaches used in these 85 papers accord-
ing to the category to which these approaches belong
(i.e., supervised, unsupervised, and RL). In addition, for
each decision-making process, we provide not only an
overview of the state-of-the-art, AI-powered grid solutions
but also illustrative examples that give readers a sense of
how specific AI techniques can be leveraged to solve grid
challenges. We use an independent notation system in each
subsection.

A. Renewable/Load Modeling

Renewables and load introduce many uncertainties to
the operation of low-carbon power grids. One way to

Table 1 Classification of Grid Solutions Based on AI Methods

address such uncertainties in grid operation is to develop
an accurate forecast algorithm for renewables and load.
The topic areas in renewable/load modeling include
renewable (e.g., wind and solar) generation forecasting,
load forecasting, and load clustering. Table 27 lists the most
recent works in these topic areas. Table 2 also summarizes
the data source, AI method, and computation resource
used in the references provided.

Next, we provide an example to elaborate on how AI
can be leveraged to solve PV forecasting tasks in the grid.
The technical details are reported in [199]. Fig. 5 shows
the geographic locations of a target solar site C6 and its
neighboring N solar sites. Let us suppose that we want
to predict the solar irradiance of the target solar site C6
at time step (k + 1). Yang et al. [199] formulate the
forecasting problem into one of estimating the parameters
of the following ARX model [199]:

x[k + 1]

= f(x[k], . . . , x[k − n + 1],

w1[k − d1 + 1], . . . , w1[k − m1 − d1 + 2],

. . . wi[k − di + 1], . . . , wi[k − mi − di + 2],

. . . wN [k − dN + 1], . . . , wN [k − mN − dN + 2])

(1)

where x[k] is the solar irradiance at the target solar site
at time step k; wi is the solar irradiance at the neighboring
solar site i; f(·) is an ARX-structured function; and positive
integers n, di, and mi are user-defined parameters that can
be determined at training stages [199]. The intuition of
the formulation (1) is that the next-step solar irradiance
x[k + 1] at the target solar site depends not only on the
local solar irradiance but also on the solar irradiance at
its neighboring solar sites. The case studies based on real-
world renewable data from California and Colorado sug-
gest that such an algorithm is suitable for 1- and 2-h ahead
PV forecasting [199]. However, the algorithm proposed in
[199] does not provide a probability description for the
forecast quality. One potential avenue for future work is to
investigate such a description [199].

7In the table, “−” indicates that no computation resource is reported
in reference.
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Table 2 Trifactors of AI-Based Renewable/Load Forecasting

B. Grid Economic Operation

The large-scale deployment of renewables poses
unprecedented challenges to the electricity market oper-
ation. Conventional deterministic tools may not be able

Fig. 5. Target solar farm site C6 (in the red circle) and its

neighboring solar farms. (Source: Fig. 1 of [199] c� IEEE 2015.)

to support the electricity market operation of the electric-
ity infrastructure with a significant amount of uncertain
renewables. Modarresi et al. [200] propose a scenario-
based approach that unlocks the potential of data in order
to incorporate renewables’ uncertainties into the dispatch
of grid resources. Let us suppose that there are N historical
scenarios ΔN = {δ1, δ2, . . . , δn, . . . , δN} that is a subset
of all possible scenarios Δ. In each historic scenario δn,
the net-load forecasting errors at each bus are recorded.
Modarresi et al. [200] formulate the ED problem as fol-
lows [200]:

min
p

c�p (2a)

s.t. g1(p) ≤ 0 (2b)

g2(p, δn) ≤ 0 ∀δn ∈ ΔN (2c)

where vector p concerns the power generation of all
generators in all intervals during a planning horizon;
vector c collects cost coefficients associated with genera-
tors; (2b) represents the scenario-independent constraints
[200], such as ramp and capacity constraints of generators;
and (2c) represents the scenario-dependent constraints
[200], such as generation-load balance constraints. Sup-
pose that p∗

N is the solution to the optimization (2) given
N historical samples. Because ΔN is a subset of all possible
scenarios Δ, it is possible that there exists a scenario δ that
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Table 3 Trifactors of AI Solutions to Market Operation

causes the scenario-dependent constraints to be violated,
i.e., g2(p

∗
N , δ) > 0. The probability that such an event may

occur is termed the “risk” in [200]. Formally, the risk v(p∗
N)

for the solution p∗
N is defined by

v(p∗
N) = Prob.(δ ∈ Δ : g2(p

∗
N , δ) > 0) (3)

where Prob.(·) denotes the probability that event “·”
occurs. We expect that the probability that the risk v(p∗

N)

of the solution p∗
N exceeds a small number � will be

small, i.e.,
Prob.(v(p∗

N) > �) < γ (4)

where 0 < �, γ � 1. With the risk preference parameters
� and γ, a natural question is how to determine the
size of ΔN , i.e., N , to achieve the risk preference (4).
Modarresi et al. [200] provide a lower bound of N that
depends solely on the look-ahead intervals and risk pref-
erence parameters [200]. Such a lower bound can help
system operators determine how many scenarios must
be drawn from the historical observations based on their
risk preference. For example, in an open-source, 2000-bus
synthetic Texas grid, if we suppose that the risk preference
parameters of the system operators are γ = 10−6 and
� = 0.0083, then 2000 historical scenarios are needed to be
embedded into the ED formulation (2) [200]. A rigorous
investigation of the relationship between the number of
support constraints and the design parameters (γ and �) is
still needed to further refine the algorithm in [200].

Other recent AI solutions to the problems of UC, ED, and
OPF are summarized in Table 3. The AI methods associated

with the data sources and computation resources in the
references are listed in Table 3.

C. Grid Security and Resource Adequacy

To decarbonize the power grids, fossil-fueled generators
are being replaced by IBRs, e.g., wind/solar farms and
energy storage. To assess grid security and resource ade-
quacy, it is necessary to develop new planning tools that
explicitly consider these new elements. The grid security
and resource adequacy analysis include steady-state, DSA,
and reliability analyses. Table 4 summarizes the state-of-
the-art AI adoption in these analyses. Next, we will present
a learning-based approach to networked microgrid security
analysis [164], in order to show how an AI technique can
be adopted in this specific topic area.

Fig. 6 shows the physical architecture of n networked
microgrids, where the n microgrids interact with one
another via distribution lines. The dynamics of the net-
worked microgrids can be described by ẋ = f(x), where
the state vector x is related to voltage magnitudes and
phase angles at the PCCs. In the networked microgrids,
large disturbances may come from: 1) the microgrid oper-
ating mode change, e.g., one microgrid enters an islanded
mode and 2) the distribution network, e.g., distribution
line tripping. The security analysis attempts to quantify the
disturbance magnitude that the networked microgrids can
tolerate [164]. The result of this analysis is critical for both
distribution system planners and operators.

Huang et al. [164] formulate the security analysis prob-
lem as one of searching for a legitimate Lyapunov function,
i.e., a system-behavior summary function for a dynamic
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Table 4 Trifactors of AI Solutions to Grid Security and Resource Adequacy Analysis

system. A Lyapunov function V (x) satisfies two conditions:
1) V (x) is a positive-definite function in a region R around
the system equilibrium point and 2) the time derivative V̇

is a negative-definite function in R. In [164], the Lyapunov
function is assumed to possess an NN structure with para-
meter vector θ. To make the NN-structured function satisfy
the two conditions of a Lyapunov function, a cost function
c(θ) is designed. The cost function incurs a positive penalty
if the NN with θ violates one or both of the two Lyapunov
function conditions. Vector θ is tuned by the following
procedure.

1) Create a sample pool by randomly drawing a large
number of states x within the region R.

2) Update θ n times based on the cost function c(θ) and
the gradient descent algorithm [164].

3) For the NN with the latest θ, search for samples that
violated one or both of the two Lyapunov conditions
via the SMT tool. If no sample is found, claim that
the NN is a Lyapunov function; otherwise, add the

Fig. 6. Physical architecture of networked microgrids with power

electronics interfaces. (Source: Fig. 1 of [164] c� IEEE 2021.)

samples to the sample pool in step 1) and repeat
step 2).

Fig. 7 visualizes a Lyapunov function learned from a state
space for a grid-tied microgrid [164]. The parameters of
the system are reported in [164]. It takes 32.18 s to
learn the Lyapunov function [164]. Having learned the
Lyapunov function shown in Fig. 8, a security region
(SR) can be estimated, which is visualized in Fig. 9. If
a disturbance leads the state vector to deviate from the
equilibrium (the origin of Fig. 9) while also remaining
within the solid red circle in Fig. 9, one can conclude
immediately that the system trajectory will converge to
the equilibrium without conducting any simulations. The

Fig. 7. NN-structured Lyapunov function: the tunable parameter

vector θ is related to weights W1 and W2, and biases b1 and b2 in

the hidden and output layers. (Source: Fig. 3 of [164] c� IEEE 2021.)
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Fig. 8. Lyapunov function learned for a grid-tied microgrid.

(Source: Fig. 6(a) of [164] c� IEEE 2021.)

region in the solid blue circle is the SR estimated by a
conventional approach. It can be observed in Fig. 9 that the
learning-based approach is much less conservative than the
conventional approach since the red-solid circle is larger
than the blue circle. Although the approach in [164] can
address heterogeneous interface dynamics and can provide
less conservative results than the conventional approach,
it incurs large computational costs when analyzing large-
scale systems.

D. Grid Monitoring, Control, and Protection

Deep penetration of clean energy resources is changing
power grid behavior (for example, clean-energy resources
may lack physical inertia). As a result, the power grids
are becoming increasingly sensitive to disturbances, and
impact anomalies may become more frequently observ-
able. Effectively monitoring and correcting these anom-
alies in real time define a key challenge facing system
operators. A large body of literature in the last three years
has argued in favor of leveraging streaming data to make

Fig. 9. SRs and valid regions (VRs): the NN approach and the

conventional (cvt.) approach. (Source: Fig. 7(a) of [164] c� IEEE

2021.)

Fig. 10. Forced oscillation mechanism.

operational decisions in real time. Table 5 summarizes
these recent works from the perspectives of data sources,
methods, and computation resources. The following are
two specific examples that address online operational chal-
lenges in the grid.

1) Forced Oscillation Localization Based on Robust Princi-
pal Component Analysis: Forced oscillations are one type
of critical phenomenon that concerns system operators
because these oscillations may cause large-scale black-
outs and decrease the lifespans of power grid compo-
nents [201]. Fig. 10 illustrates the mechanism of forced
oscillations. Let us consider a power grid as a blackbox
with some inputs and outputs, as shown in Fig. 10. The
inputs can be thought of as setpoints of generators, while
the outputs are PMU measurements. If one of the inputs
varies periodically, oscillations can be observed in the PMU
measurements. These oscillations are termed “the forced
oscillations,” and the periodic input is called the source
of the forced oscillations. Different PMU measurements
have different geographical distances from the oscillation
source. The objective of the forced oscillation localization
is to pinpoint which PMU measurements are close to the
oscillation source based only on the PMU data without
information on the inputs and the power grid models.

Locating the oscillation source is a challenging task
because the measurement closest to the source may not
exhibit the largest oscillations. Fig. 11 shows such a coun-
terintuitive case in which the measurement (the red curve)
closest to the oscillation source does not exhibit the largest
oscillation magnitude. Nezam Sarmadi et al. [202] report
a real-world, counterintuitive case in which the distance
between the source and the measurement exhibiting large
oscillations is more than 1100 mi [201]. Huang et al. [201]
formulate the forced oscillation localization as decompos-
ing the measurement matrix Yt into a low-rank matrix Lt

and a sparse matrix St, namely, Yt = Lt + St. This matrix
decomposition problem can be solved by RPCA as follows:

min
St

�Yt − St�∗ + ��St�1 (5)

where �·�∗ and �·�1 denote the nuclear norm and the l1
norm, respectively, Yt represents a measurement matrix up
to time t where each row of the matrix represents a time
series from one PMU, and St is the corresponding approx-
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Table 5 Trifactors of AI Solutions to Grid Monitoring, Control, and Protection

imate sparse matrix. Fig. 12 visualizes matrices Yt, Lt,
and St, respectively. The computation complexity analysis
of RPCA is reported in [203]. The measurement near the
source can be located by identifying the largest absolute
element in the sparse matrix. Huang et al. [201] also
provide a possible interpretation to justify the effectiveness
of the RPCA-based source localization algorithm. Huang
et al. [201] create 44 counterintuitive cases in an open-
source, benchmark system. The RPCA-based algorithm can
pinpoint the sources in 43 cases, and in the wrong case, the
algorithm can narrow the searching scope [201]. However,
when the RPCA can exactly locate the true source remains
an open-ended question.

2) Reinforcement Learning-Based Protection Scheme for
Renewable-Rich Distribution Systems: The conventional pro-
tection paradigm in distribution systems has been chal-
lenged by the increasing amount of DERs. Fig. 13 presents
the overcurrent protection scheme that is widely deployed
in power distribution systems. Such a protection scheme
will trip the line once the line current exceeds a thresh-
old value, e.g., five times the current I0 under nor-
mal conditions. However, if a DER is installed nearby,
it may decrease the fault current by injecting reverse
power flow. As a consequence, the current under the
faulty condition might be much less than the relay
threshold.
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Fig. 11. Voltage deviations in a counterintuitive case: the red

curve is the voltage deviation closest to the oscillation source; the

black curves are other voltage deviation measurements. (Source:

Fig. 1 of [201] c� IEEE 2021.)

In order to address the protection challenges in a
renewable-rich distribution system, Wu et al. [204] place
the protection problem into an RL framework (see Fig. 14)
in which the protection scheme is learned by interacting
with a distribution system simulator. In the RL framework,
the distribution system is modeled by an MDP described
by states s ∈ S , actions a ∈ A, a reward function r(s, a),
transition probability P , and a user-defined discount factor
β ∈ (0, 1]. The implication of the states, action, and reward
function in the protection problem is annotated in Fig. 13.
In particular, the state si,t and action ai,t of relay i at time
t are defined by

si,t = {sc
i,t, s

b
i,t, s

d
i,t} (6a)

ai,t = {aset
i,t, a

d
i,t, a

reset
i,t } (6b)

where sc
i,t represents local current measurements, sb

i,t

represents the status of the local breaker, sc
i,t represents

the value of the countdown timer, aset
i,t represents the

action of triggering the countdown timer, ad
i,t represents

the action of decreasing the value of the counter by one,
and areset

i,t represents the action of resetting the counter.
The reward function gives deterministic positive rewards
to the tripping action under fault conditions and stay-in-
silence action under normal condition, and it gives neg-
ative rewards to malfunctions. The transition probability
is determined by the distribution system; in practice, it is
unknown. The optimal action a∗(s) at state s is obtained
by

Q(s, a) = E

�
r(s, a) + β max

a�∈A
Q(s�, a�)

�
(7a)

a∗(s) = arg max
a�∈A

Q(s, a�) (7b)

where E(·) is the expectation operator, a� is the possible
next-step action, and s� is the next-step state given the cur-
rent state and action; it is determined by the distribution

system. In [204], the Q function in (7) is approximated
by an NN. The NN’s parameters are learned by a sequence
of {s, a, r, s�} observations from the framework shown in
Fig. 14. The dataset reported in [205] can be used for
training the algorithm. The simulation results in [204]
suggest that the failure rate of the RL-based relay is only
0.32% in a distribution system with 30% DER penetration,
whereas the conventional overcurrent relay has a much
higher failure rate, i.e., 15.46%, under the same condi-
tion. One future direction of this work is to investigate
a rigorous convergence guarantee for the sequential RL
algorithm [204].

To summarize this section, we provide twofold guid-
ance on applying use-inspired AI methods in power sys-
tems. First, it is critical to find appropriate application
scenarios that take precedence over proposing innovative
methodology. With deep NNs as representatives, current
AI techniques that are essentially model-agnostic function
approximators usually present outperforming performance
in application scenarios where there is only heuristic expe-
rience with no clear first-principle physical model, such as
in load and renewable prediction. The illustrated NN-based
Lyapunov function [164] is another example. Although a
Lyapunov function itself has a rigorous definition, there
is no traditional cost-effective analytical or numerical way
to construct such a function for a large-scale real-world
dynamical system, in which NNs can provide an alternative
effective solution. Second, it is desirable to intelligently
and insightfully formulate critical challenges in traditional
power systems into AI-friendly formats. Consider illus-
trated forced oscillation source localization [201] as one
example. Intuitively, it can be formulated as a typical
classification problem by taking system global states as
inputs and discrete location labels as outputs. However,
formulated as a matrix decomposition problem, this prob-
lem can be solved by RPCA that is commonly used for
image processing, which has both outperforming accuracy
and explainability.

VI. U S E C A S E S O F I N D U S T R Y
A D O P T I O N
As more measurement data and data-driven algorithms
become available, the power industry continues to adapt
and improve operations by leveraging new technology
and systems that enable it to meet and exceed customer
expectations. This section presents some industry use cases
to illustrate the continuing adoption of machine learning
techniques by Oncor, a regulated utility that operates the
largest distribution and transmission system in Texas. The
following use cases were selected to show instances of
AI adoption with relatively high maturity. In addition, we
illustrate use cases (e.g., asset management) that are not
considered in power-systems research but are essential
for business operations with physical devices spread over
large distances. All use case developments are based on
business needs, and the value of the investment must be
justified before a use case is developed, even if data are
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Fig. 12. Illustration of the RPCA-based source localization algorithm: (a) measurement matrix, (b) low-rank matrix, and (c) sparse matrix.

The (normalized) magnitudes of matrix entries are color-coded. The measurement closest to the source can be tracked by identifying the

largest absolute entry in the sparse matrix, i.e., the entry with the brightest color. (Source: Fig. 2 of [201] c� IEEE 2021.)

readily available. Moreover, the value-add of some high-
performance algorithms in many cases may not offset the
maintenance cost required to keep such models operating
properly (e.g., due to model drift). Table 6 provides a brief
introduction to the industry use cases that will be described
in detail. Because some use cases involve proprietary infor-
mation, details about preprocessing and postprocessing
steps, and model accuracy level will not be disclosed.

In many industry use-cases, the methods currently used
may appear simplistic compared to the latest research;
however, these use-cases are of high value, and large
amounts of data are readily available. Utilities usually have
multiple databases for various systems, such as outage
management, advanced metering, work orders, geograph-
ical and meteorological data, and financial info. An essen-
tial challenge for conducting any big data analysis is to
unify this data and enforce consistent formats for each
data type. At Oncor, a datalake was created to consolidate
the data needed for analytics. The datalake replicates data
from all of Oncor’s operational databases. In addition to
supporting uniformity, this approach also minimizes stress
on operational databases because they are accessed only

Fig. 13. Conventional threshold-based protection scheme may fail

due to low fault current. (Modified from source: Fig. 1 of [204].)

Fig. 14. Obtaining the Q function for the RL-based relay: the

optimal policy embedded in the RL-based relay is obtained by

interacting with a distribution system simulator.

during each scheduled copy rather than whenever an
analyst makes a query.

As the industry continues to adopt machine learning
continues, and available platforms become more mature,
advanced techniques will be more feasible at a lower cost;
these will be necessary to address more complex prob-
lems in power systems. Most importantly, the collaboration
between practitioners and researchers must intensify to
achieve efficient and continuous adoption.

A. Asset Health

For all utility companies, monitoring and maintaining
their assets are critical to realizing system reliability and
providing the highest quality service to their customers.
Some assets, such as distribution class transformers, can
be monitored by utilizing AMI meter data, such as voltage
and kWh readings. For assets where digital measurements
are not available, health monitoring may be possible by
analyzing asset images using advanced image processing
techniques. Several Oncor use cases are presented below
to illustrate how asset health can be monitored by utilizing
machine learning methods.

As the largest utility company in the state of Texas,
Oncor provides power to nearly four million customers
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Table 6 Industry Data-Driven Use Cases

through more than one million distribution class trans-
formers, which can fail from damaged coils or overload
degradation. Reactive replacement of a failed transformer
can take more than 4 h, but proactive replacements often
take less than 1 h. Thus, detecting failure precursors can
significantly reduce both labor costs and outage time.

Fig. 15 shows a plot of the voltage and load measure-
ments from a single-phase 240-V AMI meter. Both voltage
“V1” (in Volts) and load “LOAD” (in kWh) time series,
in red and gray, respectively, have a 15-min resolution.
The two horizontal lines are the upper and lower limits
of the operating voltage ratings defined by the American
National Standards Institute (ANSI C84.1-2020), which
are ±5% of the nominal voltage. On June 24, 2018, the
voltage suddenly rose above the upper limit due to a
damaged coil on the primary side of the transformer. The
sudden drop in voltage on July 18, 2018, denotes the time
of the replacement. Typically, a transformer will not fail
immediately after a coil is damaged. Therefore, proactive
replacement is realistic and valuable if a change in voltage
can be detected soon enough.

After examining the preoutage voltage profiles of
all transformers replaced in Oncor’s system during an
18-month period, a change point detection algorithm was
designed to detect over/under voltage issues. A change in
mean and/or variance of a meter’s voltage was detected
by a PySpark implementation of the functions provided
in [206]. Several postprocessing steps were implemented
to remove change points due to outages or temporary volt-
age changes. The thresholds for these steps were selected
from the ground-truth data. Based on the number of issues

Fig. 15. Voltage profile of a transformer with a coil damage and

subsequent replacement. The voltage profile is in red, and the load

profile is in gray.

seen on the same feeder, the detected issues were then cat-
egorized into various types, such as meter, transformer, or
regulation issues, to enhance the troubleshooting process
of the distribution operations organization. The algorithm
and thresholds were tuned and improved using feedback
received from the field. Currently, the voltage monitoring
process runs every weekday on data from 3.7 million AMI
meters. The weekly average accuracy for June–November
2021 is 94%.

Oncor began to monitor distribution transformer health
in 2016. As of November 2021, 3834 issues have been
resolved proactively using transformer health analysis.
These issues include damaged transformers or meters,
as well as installation, regulation, and secondary issues
that affect voltage measurements. Proactive transformer
maintenance has saved Oncor approximately $3.25 million
in equipment, labor, and expenses, as well as 5.5 million
customer interruption minutes.

Another asset health use case is defective insulator
detection, due to, for example, lightning strikes, forceful
impacts, or aging. Defective insulators are hazardous to
the operation of power lines and pose a risk to system
reliability. Oncor has more than 18 000 circuit miles of
transmission lines with over 500 000 transmission insula-
tors. Rapid identification of damaged insulators, especially
after a storm, is, therefore, a critical task in asset man-
agement. Due to the scale of Oncor’s transmission system,
manual inspection is infeasible. An automated inspection
method was developed, which uses aerial/drone images of
transmission lines and convolutional NNs.

The insulator defect detection method employs You Only
Look Once, Version 3 (YOLOv3 [9]), which is a real-
time object detection model that uses Darknet-53 [207]
as the backbone feature extractor in a deep convolutional
NN. The model was initialized with YOLO’s pretrained
weights using the Microsoft Common Objects in Context
(COCO) dataset [208], and insulator images, provided by
the Electric Power Research Institute (EPRI), were used for
transfer learning and validation (confidential data).

The defect detector successfully recognized the insula-
tors in an image, pinpointed those issues of each damaged
insulator, and classified the issues as either “broken” or
“flashed.” For the 50 testing images, each containing mul-
tiple flashed/broken locations, 100% of the broken points
were detected correctly, and 90% of the flashed points
were detected. There were no misclassified issues.

The recent Texas House Bill 4150, also known as the
“William Thomas Heath Power Line Safety Act,” which was
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passed through the Legislature in May 2019, requires all
utilities to make regular inspections of their power lines to
ensure that they comply with state and federal safety reg-
ulations. Although Oncor completes routine inspections of
all transmission power lines, detailed manual inspections
of all structures are time-consuming and impactful to land
owners and costly. In an effort to reduce resources, such
as on right-of-way truck traffic, another deep model was
trained and applied to aerial images of the power lines.
This model is being developed in stages to ultimately iden-
tify reliability risks due to structures damaged by impacts
or aging. The first stage of this model requires Oncor to
verify all structure asset information in the Oncor Trans-
mission Information System. Because many transmission
lines are 40+ years old, information in historical records
may be inaccurate for structures where components were
replaced or added after the initial installation. Additional
stages include identifying attributes that can indicate struc-
tural issues that may cause outages and affect reliability
performance. These attributes include the following.

1) Composition: Wood, steel, and concrete.
2) Design: H-frame, A-frame, lattice tower, multipole,

and single-pole.
3) Cross arm: Beam and double-plank.
4) Brace: V , X, and knee.
The effort to classify transmission line attributes made

use of YOLOv3; the initial results were promising, with
accuracy rates of 89% for braces and 87% for cross arms.
Figs. 16 and 17 show several examples of successful classi-
fication results. As more images are labeled to augment
training data, the model’s performance is expected to
improve; furthermore, by including images with defective
structures, the system can be used to inventory compo-
nents and their degradation levels.

B. Load Forecasting

Load forecasting is an essential building block in operat-
ing and planning tasks in both the power industry [209]
and commercial building energy [210]. It is needed in
many decision-making processes for electric energy gen-
eration, DERs management, transmission, distribution,
markets, and demand–response. The pursuit of models

Fig. 16. Examples for brace type classification. Yellow boxes:

V brace; green box: knee brace; and blue boxes: X brace.

Fig. 17. Examples for beam type classification. Red box: wood

beam; yellow box: steel beam; and green box: wood double-plank.

that can achieve accurate load forecasts for short-, mid-,
and/or long-term purposes is a long-standing research area
with a large body of the literature [211], [212].

For utility companies, short- and mid-term load forecasts
are used to plan switching operations in control centers.
Moreover, load forecasts contribute to network recon-
figuration and infrastructure development/improvement
decisions. For example, to better prepare for high-power-
demand seasons, Oncor conducts load analyses to forecast
summer and winter feeder load peaks. In some cases, a
contingency plan will be made ahead of these peak seasons
for feeders that are at risk of overload based on historical
load data leveraged by analytics.

These efforts have significantly improved Oncor’s reli-
ability performance; there has not been a feeder lockout
event due to overload since 2018. Switching operations,
however, are a major challenge for feeder load forecasting
because a feeder’s load can change significantly due to a
load switching event (e.g., feeder reconfiguration due to
an outage or planned maintenance). A robust model is
needed to respond to these events quickly and adjust the
forecasts correspondingly. Oncor currently is developing
deep learning methods to surpass the performance of the
current approach.

Besides feeder load forecasts, load forecasting at any
device is needed for making operational decisions in the
control rooms. One approach is to forecast the load at
each distribution transformer using AMI meter data and
then aggregate it at each device as needed. With a large
number of distribution transformers (e.g., more than one
million in Oncor’s system), if computational power is lim-
ited, cluster analysis can be used to group transformers
with similar load behaviors. Normalization (rescaling each
load profile to range [0, 1]) is needed before clustering
so that the clustering results are affected mainly by the
shape of the load profiles. After the transformers have
been assigned into clusters, load forecasts for each clus-
ter center (the representative of all transformers in that
cluster) can be obtained; they are then scaled back to
each transformer’s load level by undoing the normalization
steps. If distributed computing platforms are available,
transformer load forecasting can be conducted by directly
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Fig. 18. Example of transformer load forecast results. Blue dots:

actual measurements; red dots: predicted values. Top: predicted

and actual loads. Bottom: predicted and actual temperatures.

training individual models for every transformer, which
will introduce fewer errors.

Oncor implemented a regression tree model [213] on
Spark that serves both short- and mid-term needs. The
load of a transformer is affected by both numerical and
categorical factors. The most important numerical factors
include temperature, wind speed, humidity, and solar radi-
ation, whereas categorical factors include the time of day,
day of week, month, and so on. To avoid overfitting, the
maximum numbers of layers and leaves were tuned based
on model performance.

Fig. 18 shows an example of the hourly load forecasting
results for one distribution transformer over the course of
three days. The blue and red curves on the top plot give the
actual and predicted load based on the predicted temper-
atures in the bottom plot (blue curve) using a regression
tree model trained for a particular transformer. There is
a tradeoff between model performance (error level) and
computing time, which can be calibrated to suit shifting
business needs at any given time. This approach is able to
capture nonperiodic activity that sometimes deviates from
the temperature, as seen on Day 2 in Fig. 18. The accuracy
of load forecasts is highly dependent on the accuracy of
weather forecasts, which utility companies usually obtain
from vendors. The uncertainty in the exogenous factors
must be accounted for in the final forecast, and because
several of those factors are forecasts themselves, errors can
be large. In this case, the model’s performance is sufficient
to add value to business operations at normal operating
levels and in typical seasonal weather. The accuracy will
be reduced during the time of extreme cold or heat due to
the lack of historical meter data.

A special case in load forecasting is cold load character-
ization. During a steady state, the heating or cooling load
on a feeder is typically a smaller percentage of the total
heating or cooling load. This reduced load results from
the diversity of HVAC units simultaneously running due
to normal cycling between on and off. After an extended
outage, the temperature in the residence will likely fall out-
side the setpoint range. Once the power is restored to the

feeder, the diversity of the heating or cooling load would be
lost due to all the units turning on at the same time. This
increase in load is referred to as “cold load.” After some
time period passes, the diversity will be restored because
the unit run times will vary depending on factors such as
HVAC rating, home size, and temperature setpoints. Cold
load peak values are affected by preoutage load behavior,
season (winter/summer), time of day, ambient tempera-
ture, and load composition (customer types). Predicting
these values at feeder breakers or other downstream pro-
tective devices enables optimal sequencing of operations
to restore power quickly while minimizing the likelihood
of damaging equipment. In addition, EMS typically has a
load shed/restoration tool that can automatically conduct
outage rotations among all feeders in the system during
a short supply situation, such as the recent Texas power
crisis [70]. With predictions of each feeder’s postoutage
load peaks, the EMS can automatically and accurately
follow ISO’s load-shed requirements to protect the entire
power grid.

Oncor is currently testing a linear regression model to
predict the ratio of the peak cold load (postoutage) and
preoutage load of a feeder. The data used are outage dura-
tion, preoutage and postoutage temperatures, and the frac-
tion of residential customers on the feeder. The residential
load fraction is a good proxy for feeder load diversity (i.e.,
the independently controlled cyclic loads, such as HVAC
systems that may be energized at any given time during
normal operating conditions). Since feeder breaker level
outages are relatively rare, feeders are grouped by their
residential fractions, and a model is learned for each feeder
group. A total of 1127 breakers were evaluated, and train-
ing data were collected for fitting the regression model. To
accurately capture the cold load behavior, switch operation
logs and fuse level events were reviewed to ensure that
the cold load peaks were neither overestimated due to
switching operations nor underestimated due to fuse level
events behind the breakers. During an emergency situa-
tion, this model will take the preselected outage durations
for feeder rotations and postoutage temperatures as inputs.
The model will output a predicted load ratio for each
(phase) feeder and the power ratio, and then, the cold-
load peaks can be estimated. These four predictions are
useful for unbalanced feeders; in balanced feeders, a single
estimate of the power ratio is sufficient.

Fig. 19 shows an example of the cold load peak pre-
diction for one feeder using the trained regression model.
The two highlighted points in the figure mark the pre-
outage current and predicted postoutage current for one
phase of a feeder. The predicted value is marked at the
same location as the postoutage load peak only for better
visualization and easier comparison.

C. Residential/Industrial/Commercial
Categorization

For many transmission and distribution planning mod-
els, RIC percentages at each substation transformer bank
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Fig. 19. Example of the cold load peek forecasting result for one

feeder. Orange curve: SCADA current time series data before and

after a feeder level outage. Gray points: preoutage current reading

and predicted postoutage current.

are used to allocate load in the base-case models. These
percentages are also used to derive the number of var-
ious motor types for dynamics models and simulations.
Likewise, distribution planners must sometimes perform
weather corrections for load projections. In these cases,
industrial and other nonweather-sensitive loads (such as
water pumping and/or oil field pumping loads) are not
weather-corrected because these load types are rarely
weather-sensitive or weather-dependent. Traditionally, the
customer category of a premise is established at the cre-
ation of the premise and may not get updated when the
customer type changes. For example, a commercial build-
ing can be leased to a new business that has a completely
different load profile from that of the previous business,
but the utility may not be aware of the change.

Before the system-wide installation of advanced meters,
the RIC process used typical summer and winter hourly
load profiles for each category of the building distribution
feeder models. With the availability of AMI interval data
and distributed computing, the process can be improved
by directly analyzing the load profile of each premise.
Because residential meters can usually be identified using
the information provided by ISOs, it is more valuable to
focus on nonresidential meters.

As an initial approach, cluster analysis was conducted on
data from approximately 490 000 nonresidential meters.
Domain experts selected 12 weeks (noncontiguous) over a
one-year period that adequately covered different seasonal
and holiday effects (e.g., extended hours during holidays).
The 15-min interval load data were collected from each
week, and the time series for each meter was stacked into
8064-D vectors (12 × 7 × 24 × 4). K-means clustering
was applied to the data with, initially, k = 100. The initial
parameter values were chosen as subject matter experts’
estimations. Subsequently, large clusters were checked by
comparison of random samples within the cluster to the
cluster center (i.e., comparing the average load profile
with the other profiles within the cluster). If a large

deviation was found, then the cluster was split. A less
heuristic approach would be to use the V -measure or
silhouette-coefficient to determine an optimal number of
clusters [214], [215]; however, cluster splitting was found
to be effective for this use case.

This cluster analysis was conducted using Spark;
3–4 h were needed for a cluster with two name nodes (dual
Xeon-4208, 768-GB RAM per node) and eight data nodes
(dual Xeon-5218, 768-GB RAM per node), as shown in
Table 6. The analysis will be repeated annually to capture
any premises with changes in load type.

D. Other Use Cases

Many companies in the power industry have been
developing data-driven methods for their business needs.
Exelon Utility and ComEd applied classification methods
to aerial/satellite images and light detection and ranging
(LiDAR) data for vegetation management to better under-
stand the system’s tree trimming workload in the system
seeking to cut rimming costs while reducing the number
of tree-related outages [216], [217]. ISO New England
proposed a prediction method based on a decision tree
to instruct interface limit values for different operating
conditions [218]. Researchers in Hitachi proposed a three-
layer wind power prediction model based on the data from
historical power measurements and numerical weather
prediction tools [219]. In addition, Bhattarai et al. [56]
reviewed related literature on big data analytics from the
perspectives of electric utilities and industry.

VII. C O N C L U S I O N A N D O U T L O O K
In this article, we have briefly reviewed the structure
of power system physical and market operation, today’s
AI infrastructure of data acquisition and computation in
power systems, state-of-the-art AI-based approaches for
multiple critical functions, and industrial use cases of AI
methods. In the following, we propose several research
directions from the aspects of data, computing, and AI
algorithms.

A. High-Quality Open-Source Datasets

Despite the advances in data acquisition, in contrast to
numerous datasets that have benefited broad AI commu-
nities, the lack of publicly accessible high-quality power
datasets may be impeding the advancement of AI research
in power systems. There are several reasons for the lim-
ited public access to power datasets. First, most real-
world operational data are protected by policies such
as CEII in the interest of confidentiality. Second, due to
the reliability of real-world power grids, the rarity of
opportunities to observe high-impact events may produce
an insufficiently robust real-world measurement dataset.
Third, the value of creating comprehensive and trustwor-
thy benchmark power datasets has been overlooked by
the power system community. There have been few open-
source datasets [220], [221] and online contests dedi-
cated to topics such as forced oscillation localization [222]
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and power system operation [223], [224]. However, far
more will be needed to build a standard library of open-
source benchmark datasets along with critical tasks in a
clear mathematical formulation that can be used to train,
calibrate, test, and benchmark data-driven models. One
critical challenge is that commonly used random sampling
and data generation methods do not guarantee represen-
tativeness [44] and may introduce unexpected biases into
subsequent data-drive methods. Therefore, it is critical
to investigate data generation methods that guarantee
comprehensiveness and representativeness; these may be
dataset-inspired or task-tailored. In the meantime, it is
also necessary to propose algorithm-agnostic metrics to
consistently assess the property of representativeness.

B. Advanced Computing

As mentioned in Section II, complex control algorithms
are too time-consuming for real-time security control,
especially in contingency scenarios. The rapid expansion
of sensors has enabled massive data acquisition; however,
although these data are necessary for realizing a digitized
power grid, using all of it is beyond the current computing
capacity for centralized methods. Therefore, to explore
and exploit advanced algorithms and massive streaming
data, hybrid edge and cloud computing are necessary to
dynamically balance the computational load and escalate
computing power as needed. For example, edge devices
can compute partial results across several hundred sen-
sors (e.g., half of NN’s layers) and forward the results
to the control center for final computations, effectively
distributing the computational load. Furthermore, new
ASIC devices, dedicated to power system computations,
could be used in edge devices for real-time data processing
and to accelerate simulations. In addition, communications
between edge and cloud may contain sensitive informa-
tion, requiring privacy-preserving methods, such as feder-
ated learning [110].

Besides accelerating computation, platforms are needed
to manage the complexity introduced by digitization. The
software development industry uses a set of (automation)
practices called “DevOps” to manage the development,
integration, testing, deployment, and monitoring of dis-
tributed software systems. In sectors where data-driven
and machine learning algorithms are used, another layer
is added to DevOps [225], [226] that encompasses auto-
mated training, testing, deployment, and monitoring of
models—this is called “MLOps” [227], [228]. Both DevOps
and MLOps lower the maintenance cost of complex soft-
ware systems through automation, but the initial invest-
ment is high. For efficient digitization of the power grid,
both DevOps and MLOps will be necessary; however, there
are unique aspects of power systems that require investi-
gation. Because the grid is primarily hardware, it would be
highly imprudent to blindly adopt methods developed for
pure software environments.

The instrumentation and sensors being deployed into
modern grids also bring cybersecurity challenges. If the

data and controls are transmitted over the internet
(e.g., cloud computing), the grid is vulnerable to the same
cyberattacks as a website, except the stakes are much
higher: outages, energy theft, and loss of private data.
Monitoring and detecting cyberthreats to the grid are
important areas for cross-disciplinary research combining
power systems, cybersecurity, and AI.

C. Use-Inspired AI Methods for Practical
Applications

Because power grids are large-scale critical infrastruc-
ture systems for human society, future research efforts
ought to use-inspired AI algorithms that possess three key
properties, namely, interpretability, robustness, and scala-
bility, aiming to facilitate practical applications. First, AI
algorithms ought to be explainable by first-principle-based
physical models because only interpretable algorithms
are acceptable for participation in the human-in-the-loop
decision-making process. In particular, interpretable AI
approaches should provide clear causal inference for the
purposes of real-time monitoring, control, and diagnosis,
such as identifying the root cause of complex observa-
tions. Preliminary efforts have been devoted to physics-
informed ML, as summarized in [229]. The principle is
to steer the learning process toward identifying physically
consistent solutions, of which instructive guidance con-
tains three aspects, namely, data processing, loss function
modification, and model architecture design. For example,
incorporating ordinary different equation (ODE) formats
into loss function as regularization terms can improve
the performance of system identification algorithms based
on transient data or improve the fidelity of transient
data generation methods. Second, AI algorithms must
have performance guarantees extending beyond the basic,
unperturbed scenarios. Particularly, the robustness to per-
turbation is critically important for RL-based algorithms
for decision-making. Meta-RL [230], [231] and transfer
learning can potentially accommodate the gap between
reality and simulation environment, thereby rendering the
decision-making adaptive to varying conditions and sce-
narios. Third, another highly desirable feature of AI algo-
rithms is scalability, which refers to adequate effectiveness
and efficiency in large-scale real-world systems. The con-
cern regarding scalability arises from the aforementioned
observation that the performance of existing AI algorithms
in the power system domain is mostly demonstrated by
small-scale grids without validation in large-scale cases. As
high-dimensional measurements in power systems empir-
ically have properties such as approximate low-rankness
and sparsity, they may be potentially efficacious to discover
intrinsic low-dimensional manifolds and linear coordinates
in data structure [232].

In summary, digitization of the power grid will play
a major role in transforming the electricity sector into
a decarbonized system while simultaneously improving
grid reliability. The synergy of high-dimensional dynamic
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data, increased computing power, and use-inspired AI
algorithms will enable improvements to the reliability and
operational efficiency of the power grid at multiple scales.
Challenges remain in the integration of heterogenous
datasets, cyber–physical security, and the development of
robust, interpretable AI algorithms. Strong collaboration
between industry and academia will be crucial for the

successful adoption of use-inspired AI methods in a decar-
bonized power system. �
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