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a b s t r a c t 

Unprecedented winter storms that hit across Texas in February 2021 have caused at least 69 deaths and 4.5 million customer interruptions due to the wide-ranging 

generation capacity outage and record-breaking electricity demand. While much remains to be investigated on what, how, and why such wide-spread power outages 

occurred across Texas, it is imperative for the broader macro energy community to develop insights for policy making based on a coherent electric grid model and 

data set. In this paper, we collaboratively release an open-source extendable model that is synthetic but nevertheless provides a realistic representation of the actual 

energy grid, accompanied by open-source cross-domain data sets. This simplified synthetic model is calibrated to the best of our knowledge based on published data 

resources. Building upon this open-source synthetic grid model, researchers could quantitatively assess the impact of various policies on mitigating the impact of 

such extreme events. As an example, in this paper we critically assess several corrective measures that could have mitigated the blackout under such extreme weather 

conditions. We uncover the regional disparity of load shedding. The analysis also quantifies the sensitivity of several corrective measures with respect to mitigating the 

severity of the power outage, as measured in Energy-not-Served (ENS). This approach and methodology are generalizable for other regions experiencing significant 

energy portfolio transitions. 
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. Introduction 

The extreme winter storm and associated electricity outages in

ebruary 2021 are estimated to have caused more than 70 deaths

1] and $200 billion economic loss [2] in the state of Texas. Besides

he official brief review [3] and ongoing internal investigation on the

lectric Reliability Council of Texas (ERCOT), there have been prelim-

nary reports from non-peer-reviewed articles [4–6] , press interviews

7,8] and a few recent academic publication [9] on potential causes

nd technical solutions for this blackout event. A challenging question

or the broader energy research community lies in how to develop an

pen-source and extendable model that captures the key characteristics

ssociated with this extreme outage. Such models would offer an open

latform for corrective policy assessment. 

The existing studies of power grid resilience to extreme weather con-

itions offer power grid resilience enhancement strategies mainly in

wo perspectives: (a) physical hardiness such as vegetation management

10] , substation relocation [11] , selective undergrounding [12] and etc.,

nd (b) operational capability such as emergency generator [13] , dis-

ributed energy resources [14,15] , grid monitoring system [16,17] and

tc. However, the lack of a common open-source realistic power grid

odel prevents broader communities from the assessment of these meth-
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ds for specific real-world events via simulation. While researchers re-

ently have contributed to the creation of large-scale synthetic grid mod-

ls [18] for analysis such as macro-scope energy portfolio transition

19,20] , cross-domain and open-source reliable approaches to quantify

mpact from corrective measures against blackout events under extreme

rigid weather are still at a nascent stage, with several gaps in existing

esearch. First, existing open-source large-scale synthetic grid models

re not ready-to-use for the event reproduction without rigorous cali-

ration. Second, the lack of aggregated and processed event timeline

ata prevents exhaustive simulation and further investigation. Last but

ot least, the lack of consistent quantified criteria renders studies on the

ffectiveness of potential corrective measures and their combined effect

ncomparable. 

Here, we collaboratively develop an open-source large-scale syn-

hetic baseline grid [21] , providing a realistic representation of the

ctual Texas electric grid, accompanied by the open-source data set

long the event timeline. This ready-to-use multi-platform synthetic grid

odel is calibrated based on open-source data sets, including genera-

ion by source, load by weather zones, generation unit outage timeline,

oad shedding record, etc. To the best of our knowledge, it is the first

ully open-source approach to model, simulate, benchmark, as well as

ropose corrective measures against the 2021 Texas power outage. The
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q  
lackout event reproduction results obtained from this open-source syn-

hetic model are compared and validated using key parameters obtained

rom the actual blackout reports, including the change of system gen-

ration capacity, load demand and load shedding data. Additionally,

e propose and evaluate multiple technical solutions that can possi-

ly mitigate the electricity scarcity under such extreme weather con-

itions, including energy system winterization, interconnected HVDC

ines, up-scaled demand response program and strategic energy storage

acilities. Leveraging the synthetic grid, we perform quantitative anal-

sis on the corrective measures in the aspect of reducing the extent of

lackout events. Our results indicate the strong disparity among the win-

erization effectiveness for generation units of various source types and

eographical regions, the quantitative assessment of certain corrective

ortfolios, and the interdependence of per-unit performance of correc-

ive measures. 

. Open-source synthetic grid model and data 

We first collaboratively develop an open-source, large-scale, syn-

hetic baseline grid that provides a realistic representation of the ac-

ual Texas electric grid, and then integrate generation and load-related

ata along the event timeline, which are both publicly available on

ithub [21] . The original sources are detailed in the documentations

n the Github repository (see Data and Code Availability). In this pa-

er, the synthetic model creation focuses on feasibility of the direct cur-

ent optimal power flow (DCOPF) solution without transient stability

ssessment for the following reasons. First, this DCOPF-based synthetic

rid model offers substantial insights to the chief parameters associated

ith this blackout event based on the public data availability. Intro-

ucing synthetic yet unrealistic dynamic transient parameters would be

ounter-productive for the purpose of open-domain analysis and correc-

ive measure assessment. Second, this model is extendable further for

he research community if more credible dynamic and detailed parame-

ers become available. Third, this model is shown to be computationally

fficient. It can serve as a bridge to connect the macro energy systems

esearch community with the electric power systems engineering com-

unity. 

For the purpose of ‘what-if’ analysis, we create a comprehensive

lackout event dataset via collection from publicly available sources

3,22–25] and estimation (see Methods). This dataset integrates actual

oad by weather zone, actual generation by source, 7-day-ahead load

orecast by source, solar and wind generation forecast, generation units

utage, actual available generation capacity, actual load shedding and

ustomer power outage into a single ready-to-use format. Here, we de-

ne the counterfactual load as the 7-day-ahead load forecast and the

imulated load shedding as the gap between the post-shed and coun-

erfactual load, and introduce the estimated generation capacity by

eather zone based on rated generation capacity, thermal generation

nits outage and actual renewable generation (see Methods), all of

hich play important roles in the what-if analysis. 

In this paper, we develop an open-source synthetic grid that captures

ome of the key characteristics of the Texas Interconnection. Texas Inter-

onnection is one of the AC synchronized grids in North America that

overs most of Texas. The Texas Interconnection has a total of more

han 86,000 MW of generation resources of various types, including

1.0% Natural Gas, 24.8% wind, 13.4% coal, 4.9% nuclear and 3.8%

olar [26] . The loads in the Texas Interconnection are further divided

nto 8 weather zones and the various grid operation and market data

re aggregated to the zone level before publishing. There are two DC

ies between the Texas Interconnection and the Eastern Interconnection

hat allow power exchange between two un-synchronized power grids. 

In this paper, the synthetic grid is calibrated carefully to capture the

ey open-domain statistical characteristics of the Texas Interconnection.

he synthetic Texas grid model is adapted from an existing test system

27] and rigorously calibrated in several aspects, namely generator units

apacity, and transmission line rating (see Methods). The geographical
2 
oad distribution comes from the existing grid model [18] , while their

eal-time magnitudes in simulation are adjusted according to the real

oad dataset or calculated ones depending on whether the real load data

re available. The generator units capacities are updated to the actual

vailable generation capacity [24] in January 2021. Without modifying

he network topology, some transmission lines are upgraded to ensure

hat the model remains feasible in the period leading up to the black-

uts and that no renewable generators are unreasonably curtailed due

o congestion. 

Integrating the open-source datasets, the ready-to-use synthetic grid

odel is the first open-source simulation package dedicated to poten-

ially provide firm interdisciplinary insights into the particular real-

orld blackout event, which is extendable for the broader macro en-

rgy community due to its transparency. To give an intuitive impres-

ion on the blackout event, we provide an event overview along with

egional generation outages and customer power outages ( Fig. 1 ). The

imeline of the whole blackout event ( Fig. 1 -a) that contains the actual

otal load, actual and estimated generation capacity shows the electric-

ty scarcity due to the high load demand and wide-ranging generation

utage. The actual generation and generation outage across eight ER-

OT weather zones ( Fig. 1 -b) show that the generation outage at the

arkest hour mainly consists of natural gas thermal generation outages

cross ERCOT and renewable generation outages in the North, West, Far

est and South zones. We also find the regional disparity of load shed-

ing ( Fig. 1 -c) from the aggregated county-level utility-reported cus-

omer outage data [25] during the ”darkest ” period, namely from 8 p.m.

ebruary 15, to 11 a.m. February 16. Specifically, the satellite counties

round Houston in the Coast zone and several counties distributed in

he West zone suffered the most severe outages. We notice the signifi-

ant gap between the estimated generation capacity and actual online

apacity before February 15, and increasing mismatch between them

fter noon on February 16, that are in line with expectations due to sev-

ral reasons explained in Appendix A.1 . We have observed that there

xists a substantial mismatch between actual load and either actual on-

ine or estimated generation capacity, which is beyond the reserve limit.

his mismatch may be attributed to multiple reasons, such as transient

tability requirements, reactive power demands, and capped wholesale

arket price [28] , which deserve more investigation but are neverthe-

ess outside the scope of this paper. To show the complex but realistic

eatures of the synthetic grid, we visualize the topology of the whole

ynthetic grid ( Fig. 2 ), of which load distribution, generation units ca-

acity and transmission lines rating are calibrated based on the static

exas grid-related data (see Methods). In the following analysis, we will

everage the synthetic model along with the blackout event dataset to

emonstrate its fidelity by reproducing the blackout event via simula-

ion and then perform quantitative assessments of multiple corrective

easures against extreme frigid weather. 

We would like to remark that the approach of developing such an

pen-source synthetic grid model is extendable for similar assessment of

mpact and corrective measures of severe weather-induced power out-

ges across many regions. The synthetic model follows the Matpower

ase format which uses tables to store generator, load and topology in-

ormation [29] . The modification of all components are done through

ltering the corresponding row of the tables. As an example, this syn-

hetic grid model is also compatible with the open-source model and

ataset in [30] which can be used to perform many more comprehensive

tudies such as HVDC interconnection designs, 2030 projected profiles,

enewable and storage scenarios and integrated simulation along with

he synthetic Western and Eastern Interconnections. 

. Methods 

.1. Data aggregation 

In order to validate the model by event production and perform

uantitative what-if analysis, we integrate the blackout related data dur-
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Fig. 1. Overview of the 2021 Texas blackout event from the perspective of generation capacity and load shedding. a , Blackout event overview in terms of 

generation capacity and actual load associated with the key event labels. The significant gap between the estimated generation capacity and actual online capacity 

before February 15, and increasing mismatch between them after noon on February 16, are in line with expectations due to several reasons explained in Appendix A.1 . 

b , Online and offline generation capacity by source in ERCOT weather zones at 11:00 a.m. February 16. The ring size is determined by the zone-level total generation 

capacity and its color represents the type of generation capacity. The block color represents the weather zone where the county is located (grey blocks are not within 

eight weather zones). c , Normalized county-level customer outage percentage during the ”darkest ” period. The block color represents the county-level customer 

outage percentage [25] , where the ERCOT average outage percentage is 31% (grey blocks mean no data available). The ”darkest ” period is ranging from 8 p.m. 

February 15, to 11 a.m. February 16, possessing the largest load shedding amount. 
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ng the event period between February 14, to February 18. The original

ources for all datasets are provided in the Data and Code Availability

ection. We integrate the datasets via two ways, namely data collection

rom multiple resources [22–25] and data estimation. 

• Data Collection : We collect actual load, actual generation, 7-day-

ahead load forecast and 7-day-ahead solar generation forecast data

from the ERCOT regular data channel [22] . We collect generation

units outage data from the source [23] dedicated for the blackout

event, which specifies the outage period, outaged capacity, source

type, and location of outaged and de-rated generator units. Note that

only part of all generation outages are included in this source, since

some resource entities do not provide ERCOT consent to disclose,

and outages shorter than two hours may not be included. We ob-

tain generation capacity data from the Energy Information Admis-

sion (EIA) generation inventory data source [24] . Additionally, we

get the customer power outage data [25] from PowerOutage, which

has city-level utility-reported number of customers suffering power

outage. 
3 
• Data Estimation : We define the estimated generation capacity as the

sum of total maximum online capacity of thermal and nuclear gen-

eration and total real-time varying available wind and solar gen-

eration capacity. Here the maximum online capacity of thermal

and nuclear generation are equal to the seasonal maximum capac-

ity [24] subtracted by the generation units outage [23] , while the

real-time varying capacity of wind and solar generation is the afore-

mentioned collected wind and solar generation data [22] . We define

the load shedding as the gap between the actual and counterfactual

load data. Here the counterfactual load data refer to the 7-day-ahead

load forecast. We also estimate the counterfactual wind generation

as described in the literature [19] using the associated weather data

[31] during the blackout event period. Wind generation estimation

in this way can achieve the highest granularity. Due to the lack of

weather data required by solar generation estimation model, the 7-

day-ahead forecast solar generation is the alternative way for the

counterfactual estimation. Great matches between actual and coun-

terfactual wind and solar generation profiles before February 9, as

shown in Fig. 3 demonstrates the accuracy of counterfactual gener-
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Fig. 2. Visualization of the large-scale synthetic Texas grid. Here the branch 

width is proportional to the transmission line rating. This synthetic grid contains 

606 generators, 1350 loads and 3206 branches, of which the generation units 

capacity, transmission line rating and load distribution are calibrated based on 

the available Texas grid-related data. 
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ation, and it also indicates that the impacts of the winter storm on

renewable generation approximately started from February 9. 

.2. Synthetic grid creation 

The synthetic Texas grid model is adapted from the existing test sys-

em [27] , and rigorously calibrated in several aspects, namely, system

opology, geographical load distribution, generation units capacity and

ransmission lines rating. Note that although the latest released synthetic

exas 7,000-bus grid [32] offers more granularity in terms of buses and

ones, the zones do not line up with the data available from ERCOT, ren-

ering remarkable difficulty for model calibration. Therefore, we still

hoose this 2,000-bus case as the base model. 

• Load distribution : The geographical load distribution comes from the

original design of the synthetic grid model [18] , of which the relative

sizes are reasonably determined by the demographic and geographi-

cal information. The real-time sizes of loads in simulation are further

adjusted to the real hourly load dataset or calculated counterfactual

ones. As the public datasets only disclose aggregated load of each

weather zone, all loads within each weather zone are proportion-

ally scaled such that the sum of all loads in each area equals the

published numbers. 
• Generation units capacity : The existing test system contains genera-

tion capacity inventory up to 2016 [18] plus the largest generators

added in the period from 2017 to 2019, with the entire generator

fleet scaled to match totals by type and zone at the start of 2020 [27] .

To update this dataset to 2021 conditions, we add eight new gener-

ators: two natural gas generators (a total of 427 MW), one biomass

generator (100 MW), four solar generators (742 MW), and one wind

generator (220 MW). These generators were added at high-voltage

buses in the synthetic network closest to their real locations. Finally,

the generation fleet was scaled such that totals by type and weather

zone match the totals from EIA Form 860-M, December 2020 (to

account for any uncaptured additions, retirements, de-ratings, etc.).
4 
• Transmission lines rating: The topology of the system is adopted from

the synthetic Texas 2,000-bus grid as described in the literature [18] .

Without modifying the topology of the transmission network, their

capacity ratings and imdepances are tuned to emulate transmission

expansion to accommodate the additional generation resources, ad-

ditional HVDC interconnections and 2021 demand. Transmission

lines are upgraded as necessary to ensure network feasibility and

to avoid unrealistic curtailment of variable renewable generators.

Specifically, 59 out of 3206 branches are upgraded, representing

108.4 GW-miles of transmission lines upgrades (out of a total of

19,374 GW-miles in the base grid. These transmission upgrades are

mostly in the Far West (29) and North (14) weather zones, where

growth of demand and generation resources has been greatest rela-

tive to the 2016 transmission network capacities. 

.3. Load shedding and restoration operation principles 

In ERCOT operation protocols, when the system-wide reserve drops

o a dangerous level that qualifies for Energy Emergency Alert (EEA)

onditions, the grid operator will use different resources from various

articipants of the ERCOT market to maintain grid security. In EEA lev-

ls 1 and 2, ERCOT will first contact industrial loads that agreed to be

isconnected during emergencies and call upon available demand re-

ponse programs. In EEA level 3 events during which the operating re-

erve capacity is below 1000 MW, ERCOT will ask transmission compa-

ies to shed load, typically done through rotating outages. In our simula-

ions, we aim to follow a similar process in determining the total amount

f load to shed while maintaining simplicity and generality. For each

napshot, we start by applying the counterfactual load and try to find

 feasible power flow solution. If the available capacity cannot satisfy

he full demand or the supply is limited by transmission line congestion,

COPF will be infeasible. In that case, we then gradually reduce the load

cross the network until a feasible solution is found. In the reproduction

imulation, the spatial distribution of shedded load obtained from the

RCOT historic demand data during the event is adopted into the simu-

ation to more closely mimic the timeline of the event. Similarly, if the

ystem-wide reserve is high enough and there is active load shedding

rom the past hours, we attempt to slowly reconnect them back until

he operation reserve has been depleted. The full logic flow of load shed

n simulation is listed in Algorithm 1 . 

Algorithm 1: Iterative Load Shedding in Simulation. 

Load renewable generation profile of hour 𝑡 , 𝑃 𝑡 
𝑔 

into model 

Modify thermal generator capacity based on unit outage data 

Load counterfactual load of hour 𝑡 , 𝑃 𝑡 
𝑙 

into model 

Apply load shedding from the past hour 𝑃 𝑡 −1 
𝑙𝑠 

to load buses 

Compute system-wide capacity reserve 𝑃 𝑡 
𝑟 
= 

∑
𝑖 ( 𝑃 𝑡 𝑔,𝑖 − 𝑃 𝑡 

𝑙,𝑖 
) + 𝑃 𝑡 −1 

𝑙𝑠 

∀𝑖 ∈ [list of all buses] 

Attempt to solve DCOPF on the base profile 

if DCOPF is infeasible or 𝑃 𝑡 
𝑟 
< 𝑃 𝑟,𝑚𝑖𝑛 then 

while DCOPF is infeasible or 𝑃 𝑡 
𝑟 
< 𝑃 𝑟,𝑚𝑖𝑛 do 

Increase load shedding: 𝑃 𝑡 
𝑙𝑠 
= 𝑃 𝑡 

𝑙𝑠 
+ Δ𝑃 𝑙𝑠 

Update 𝑃 𝑡 
𝑟 
= 𝑃 𝑡 

𝑟 
+ Δ𝑃 𝑙𝑠 

end while 

else if Operation reserve 𝑃 𝑡 
𝑟 
> 𝑃 𝑟,𝑚𝑖𝑛 and 𝑃 𝑡 

𝑙𝑠 
> 0 then 

while OPF is feasible and 𝑃 𝑡 
𝑟 
> 𝑃 𝑟,𝑚𝑖𝑛 and 𝑃 𝑡 

𝑙𝑠 
> 0 do 

Decrease load shedding: 𝑃 𝑡 
𝑙𝑠 
= 𝑃 𝑡 

𝑙𝑠 
− Δ𝑃 𝑙𝑠 

Update 𝑃 𝑡 
𝑟 
= 𝑃 𝑡 

𝑟 
− Δ𝑃 𝑙𝑠 

end while 

end if

Save 𝑃 𝑡 
𝑙𝑠 

as the minimum load shedding for hour 𝑡 



D. Wu, X. Zheng, Y. Xu et al. Advances in Applied Energy 4 (2021) 100056 

Algorithm 2: AC Transmission Network Upgrade for Additional 

HVDC Links. 

Define the maximum capacity of new HVDC tie 𝑃 𝑑𝑐 and increment 

stepsize Δ𝑃 𝑑𝑐 
Define the maximum distance 𝑁 within which the lines will be 

upgraded 

Select a heavily loaded profile snapshot as baseline 

Select a bus 𝑜 ∈ 𝐵 in the network as the location for new DC 

converter station 

Find the sets of buses [ 𝐵 

1 , 𝐵 

2 , ., 𝐵 

𝑁 ] such that 𝐷 𝑜𝑗 == 𝑛, ∀𝑗 ∈ 𝐵 

𝑛 

through recursive graph tracing 

Find the sets of all lines [ 𝐿 

1 , 𝐿 

2 , ., 𝐿 

𝑁 ] that connects the buses of 

neighbouring distance: 𝐿 

𝑛 = { 𝐿 𝑖𝑗 |𝑖 ∈ 𝐵 

𝑛 −1 , 𝑗 ∈ 𝐵 

𝑛 } 
Run DCOPF to determine initial line flows 𝑃 𝑏𝑎𝑠𝑒 

𝑖𝑗 
∀𝑖, 𝑗 ∈ 𝐵

Calculate load factor for lines that require upgrading, 

𝜌𝑏𝑎𝑠𝑒 
𝑖𝑗 

∀𝑖, 𝑗 ∈ [ 𝐿 

1 , 𝐿 

2 , ., 𝐿 

𝑁 ] 
Initialize the capacity of new DC tie, 𝑃 𝑑𝑐 = Δ𝑃 𝑑𝑐 
while 𝑃 𝑑𝑐 < 𝑃 𝑑𝑐 max do 

Set the power injection at bus 𝑜 , 𝑃 𝑜 = 𝑃 𝑑𝑐 
Solve DCOPF to obtain new line flows with additional HVDC 

injection 𝑃 𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐵

for n = [1, 2,., N] do 

Upgrade thermal rating of lines 

𝑃 max 
𝑖𝑗 

= max ( 𝑃 𝑖𝑗 ∕ 𝜌𝑏𝑎𝑠𝑒 𝑖𝑗 
, 𝑃 max 

𝑖𝑗 
) ∀𝑖, 𝑗 ∈ 𝐿 

𝑛 

end for 

Increment 𝑃 𝑑𝑐 = 𝑃 𝑑𝑐 + Δ𝑃 𝑑𝑐 iteratively to ensure convergence 

end while 

4
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comparison can be found in the literature [19] . 
. Model-based simulation of the 2021 texas blackout event 

To validate the calibrated model dedicated for the blackout event, we

eproduce the Texas blackout event from February 15, to February 18.

o this end, we simulate the synthetic grid model using the aggregated

ata, where realistic load shedding allocation and DCOPF are key steps.

e take the estimated generation capacity (the binding constraint for

oad shedding) and counterfactual load (the ebb-flow pattern of load)

s the simulation inputs. To achieve the fidelity of load shedding, we

imic the guides of load shedding and restoration [33,34] to determine

he total load shedding amount at any given moment, and perform ap-

ropriate spatial allocation of load shedding to reflect its regional dis-

arity (see Methods). We reproduce the blackout event by iteratively

olving DCOPF given the post-shedding load (see Methods), which re-

eals the hourly change of geographically distributed load, generation

nd load shedding across Texas in detail. 

We demonstrate the fidelity of the synthetic grid and the associated

imulation methods by the reproduction results of load shedding and

eneration composition ( Fig. 4 ). To quantify the severity of the black-

ut event, we use the power system reliability index energy-not-served

35] (ENS), defined as the integral of load shedding over the event time-

ine, to quantitatively evaluate the load shedding throughout the rest of

his paper. We first demonstrate the fidelity of the geographical load dis-

ribution and the designed load shedding algorithm by the good match

etween the actual and simulated total load shedding ( Fig. 4 -a) that

espectively represent a total of 998.8 GWh and 929.6 GWh Energy-

ot-Served (6.91% difference). The correlation coefficient between the

wo timeseries is 0.88, which also indicates a good match between the

e-produced load shedding process and actual ERCOT record. The un-

voidable mismatch attributes to the combined effects of errors in syn-

hetic grid modelling and system operation under emergency conditions

see Appendix A.2 for the remark on the mismatch). We then validate

hat the simulation well captures the regional disparity of load shedding

cross eight weather zones [36] by comparing the simulated zone-level

ormalized load shedding with the real one ( Fig. 4 -b). It shows that

ar West experienced the most disproportional load shedding among all
5 
ones and Coast has suffered from a significantly worse condition com-

ared to the other two most populous zones: North Central and South

entral. Finally, we validate the fidelity of generation units capacity by

ype and generation cost curves used for DCOPF by showing the almost

erfect match between actual and simulated generation composition

hroughout the event ( Fig. 4 -c). The reproduction results validate the

ynthetic baseline model, the related data and the associated simulation

ethods, which provide a reliable basis for the following what-if anal-

sis. Additionally, the reproduction results can transparently show the

hange of load, generation and load shedding along the timeline, aiding

ublic multidisciplinary researchers in combing the event development

rocess, investigating the event causes and providing possible techni-

al solutions. The transparency and reproducibility of the synthetic grid

odel also allow public researchers to contribute to further model de-

elopment and calibration. 

.1. Details of the event simulation 

• Load and Load Forecast Profile : In the reproduction of the outage

event, we apply the real historic load during the period between

February 12, and February 18, to the synthetic Texas network. The

ERCOT load data are divided into eight weather zones in Texas, each

containing a specific set of counties. In the simulation, we scale the

base value of every load bus within each weather zone such that the

total load capacity in the zone equals the ERCOT load forecast data

on the same hour, which is used as the counterfactual load profile. 
• Renewable Generator Capacity : We have estimated the unit-level wind

and solar capacity data during the event periods using the combi-

nation of available weather data and ERCOT generation-mix data.

In the reproduction of the outage event, the unit-level data are all

scaled according to the total actual renewable generation data pub-

lished on EIA [24] . These data are set to be the maximum real power

output for renewable generators and is subject to further curtail-

ments, should congestion in the lines occur. The renewable genera-

tors are set to have zero cost in the DCOPF formulation to prioritize

them over thermal energy sources. 
• Dispatch-able Generator Capacity : We use the ERCOT unit-level out-

age report [23] to determine the maximum real power output ca-

pacity for thermal generators. Although the maximum rate capacity

for thermal plants is fixed through the event, many thermal gener-

ators have experienced outage or de-rating due to various reasons,

including limited fuel supply, facility freezing and planned mainte-

nance. As the generators in the synthetic networks are equivalent

generators, exacting matching with the outage report is not possi-

ble. Instead, the outage data are first aggregated to county-level and

used to set the maximum capacity of all thermal generators of the

same fuel type in each county. 
• Formulation of DCOPF : Using deterministic system demand and re-

newable generation data, the actual output of dispatchable genera-

tors (coal, natural gas and nuclear) and the power flow pattern in

the network is determined by Direct-Current Optimal Power Flow

(DCOPF). DCOPF is an optimization formulation that computes the

most economic real power output assignment for all dispatch-able

generators in a network, such that all transmission line flow is be-

low their thermal limit and the total real power generation equals

the total demand across the network. The Matlab package Matpower

is used to solve DCOPF for all simulations. A detailed description and

formulation of DCOPF implemented by Matpower can be found in

their documentation [37] . 
• Cost Curve : The cost curves of generators in the original synthetic

network [18] are revised to make an even closer match with real-

ity. We have run a year-round multi-period DCOPF simulation using

2016 ERCOT renewable and load profile data to confirm that the

total generation from each of the fuel sources is sufficiently closely

matching historical data. A detailed experiment procedure and result
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Fig. 3. Actual and counterfactual wind and solar generation. Note that the counterfactual wind generation is estimated based on the weather data [31] as 

described in the literature [19] , while the counterfactual solar generation is obtained from ERCOT solar forecast data [22] . The model-based renewable generation 

estimation is preferred because of its higher granularity. However, for the case of counterfactual solar generation, the lack of relevant weather data prevents this 

model-based method and instead we have to use the ERCOT solar forecast data. 

Fig. 4. Blackout event reproduction via simulation on the synthetic grid in comparison with the real data. a , Comparison between the simulated and actual 

total load shedding curves. b , Zone-level normalized load shedding with 95% confidence interval (CI) during the period between 8 p.m. February 15, and 12 p.m. 

February 16, that has the highest load shedding. FW, NC and SC respectively represent Far West, North Central and South Central zones. Here the normalized 

load shedding refers to the ratio of load shedding percentage over online load percentage for each zone. We use the estimated load shedding data based on the 

counterfactual and actual load data from ERCOT rather than customer outage data [25] as the real benchmark (See Appendix A.3 ). c , Comparison between actual 

and simulated percentage of generation compositions of various source types throughout the event. 
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. Quantitative assessment of corrective measures against 

xtreme frigid weather 

In order to provide firm insights into potential technical correc-

ive policy assessment, we start from investigating four possible correc-

ive measures, namely, generation units winterization, interconnection

VDC lines, up-scaled demand response program, and strategic energy

torage facility as conceptualized in Fig. 5 . Generation units winteri-

ation only refers to the adapted winterization treatments for electric

nergy generation units, assuming no winterization is currently applied

or any units. Particularly, we reserve the impacts of wide-ranging nat-

ral gas scarcity [6] due to failures in the non-winterized natural gas

upply chain (see Appendix A.4 ). We also note that there could have
6 
een potential interruption to gas refineries in Texas which might have

lso contributed to the lack of natural gas supply, as the gas reserve

mount within Texas have been low compared to the consumption rate.

ssumed as a part of a possible future macro nationwide HVDC network,

dditional HVDC interconnections, besides two existing HVDC ties, re-

pectively connect from the Western Interconnection to the West zone

nd from the Eastern Interconnection to the Coast zone, and require

ecessary transmission lines upgrade around the locations of their con-

erter stations (see Appendix A.8 ). Up-scaled demand response refers to

arious incentive programs distributed across ERCOT that require vol-

ntary reduction of electric energy demand. Energy storage refers to the

arge utility scale storage facilities that absorb the excessive energy dur-

ng off-peak hours and release it at high power during emergency hours.
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Fig. 5. Conceptual diagram of geographi- 

cal distribution of four corrective measures 

in simulation. It illustrate a combination of 

60% facility winterization, 2 GW HVDC lines, 

2 GW up-scaled demand response program and 

4 GWh strategic energy storage facility. Here 

the generators of thermal and renewable en- 

ergy evenly implement 60% winterization. The 

two long-distance HVDC lines with total 2 GW 

deliver the power from California through the 

Western Interconnection to the West zone and 

from Florida through the Eastern Interconnec- 

tion to the Coast zone. The up-scaled demand 

response program is mainly deployed in four 

metropolises. The energy storage facilities are 

deployed around the location with rich renew- 

able generation. 
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ere we treat the energy storage as the first-aid measure while taking

he other three as the sustained electricity supply measure, especially

iewing the generation units winterization as the primary preventive

easure. Therefore, we conduct quantitative assessment of all correc-

ive measures from different perspectives in the following analysis. 

.1. Generator outage and corrective measure modelling 

To quantitatively assess the impact of generator outage on the sever-

ty of the outage event and evaluate the effectiveness of potential correc-

ive measures such as the additional HVDC interconnections, generation

nits weatherization, up-scaled demand response programs and energy

torage, it is necessary to model each of these elements appropriately

n our synthetic grid. The detailed modelling method is documented be-

ow: 

• Generator Outage : The unit-level generator outage data is retrieved

from the ERCOT public report [23,38] . As detailed generator infor-

mation is not available to the public (especially for natural gas, wind

and solar generators), we have 606 equivalent generators across the

network such that the area-wide aggregated generation capacity and

profile can match real ERCOT records. To match the real outage data

with synthetic equivalent generator, we pre-process the data by ag-

gregating the total outage capacity for each county and fuel type.

The county-level outage data are used to scale the maximum real

power output of all corresponding generators in the same county

and of the same fuel type in the synthetic network. 
• Generator Weatherization : Weatherization is a preventive measure to

reduce the impact of extreme weather conditions on the function-

ality of infrastructures. Different types of generators require differ-

ent types of weatherization treatments: wind turbines require blade

and gearbox heating while gas plants may need anti-frost treatment

for facilities. Despite the potentially big difference in weatherization

cost and complexity, our focus is more about evaluating the effec-

tiveness of weatherization among different generator types and geo-

graphical regions. To this end, we only specify the amount of MW of

weatherized generators for each fuel type in each weather zone and

try to compare the effectiveness on the reduction of ENS as a result of

weatherization. We have also considered the scarcity of natural gas

supply before and during the winter storm by approximating the de-
7 
rating of the winterized generators caused by gas supply shortage,

using disclosed unit de-rating data from ERCOT (see Appendix A.5 ).

When computing the area-level available capacity during counter-

factual simulation, we only apply weatherization to generators that

were completely out, as the de-rating of the running generators was

highly likely caused by lack of gas supply. The weatherized genera-

tors are also de-rated based on the extent of de-rating of running gas

generators in the same county. 
• HVDC Ties : We have included two existing HVDC ties to the Eastern

Interconnection in our synthetic network model. These two existing

conveter stations are modelled as fixed equivalent loads for DCOPF

computation. In each hour, the real tie flow data from ERCOT is as-

signed as real power demand for the equivalent loads and the sign is

determined by the direction of DC tie flow. This is meant to make the

DC tie flow exactly the same as real data. For counterfactual studies,

we have included two additional HVDC ties, one to the Western In-

terconnection and another to the Eastern Interconnection. Here we

assume a macro HVDC interconnection network will be built across

the U.S. following a commonly used design [39] . We have adopted

this design in determining the location for the converter stations and

upgrade the transmission lines around the converter stations (see

Appendix A.8 ). As the additional HVDC ties are introduced to be

counterfactual corrective measures to supply any extra power dur-

ing the event, their actual output power needs to be adjusted ac-

cording to the ERCOT system demand. Hence, the new DC ties are

modelled differently as equivalent generators with a cost function

representing the hypothetical cost to buy power from neighboring

states. The magnitude and direction of their tie flow is determined

by OPF result. 
• Demand Response : Demand response refers to various incentive pro-

grams that encourage voluntary reduction of electric energy demand

during peak or emergency hours. Although most demand response

programs in ERCOT are still in development at the current stage and

mostly target large industrial, commercial or aggregated customers,

it has the potential to scale up quickly and provide a valuable de-

mand side resource during similar energy emergencies. In our sim-

ulation, the effect of a demand response program is modelled as a

form of voluntary load reduction with prior agreement between load

serving entities and customers which does not count to ENS. During
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Fig. 6. Quantitative assessment of each single sustained supply measure in terms of load shedding (GW). a , The impacts of additional facility winterization 

on load shedding with different percentages from 20% to 60% . These percentages correspond to the winterization for generation capacity of 21.7 GW, 43.4 GW and 

65.1 GW. b , The impact of additional HVDC lines on load shedding with the capacity ranging from 1 to 4 GW. c , The impact of up-scaled demand response program 

on load shedding with the capacity ranging from 1 to 4 GW. Note that winterized generator units and demand response programs are deployed across ERCOT without 

priority in any specific area. Here the original curve refers to the load shedding in the event reproduction with no corrective measures. 
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energy emergencies, load resources from demand response programs

are the first to be committed before all of the other more costly steps.

Hence, we also prioritize available demand response capacity over

storage and forced load shedding. When the system reserve is below

2300 MW which corresponds to ERCOT EEA level 1, the loads across

the synthetic network are reduced up to the maximum allowed de-

mand response capacity. 
• Energy Storage : The purpose of energy storage is to absorb excessive

energy from renewable sources during off-peak hours and release

stored energy during peak and emergency hours. Unlike other types

of corrective measures that are more suitable in reducing the over-

all severity of the outage by providing sustained additional power

supply, the advantage of energy storage lies in its ability to provide

relatively large power output during a short period, which can be

used to bridge through ”most difficult ” hours. To emphasize this, we

assume all storage capacities are fully charged prior to the event and

commit them during the hours when the level of forced load shed is

around the highest. The contribution of energy storage is reflected

in the reduction of peak load shed capacity. 

Taking these corrective measure settings into account, we first quan-

ify the impacts of each single sustained electricity supply measure of

istinct extents in load shedding ( Fig. 6 ). We find that 60% genera-

ion units winterization can effectively reduce the Energy-not-Served

rom 929.6 GWh to 40.8 GWh ( Fig. 6 -a), and about 80% generation

nits winterization can prevent the blackout entirely, where we reserve

he impacts of non-winterized natural gas supply chain. We also find

hat HVDC lines and up-scaled demand response of equal capacity have

imilar but different effectiveness on mitigating the electricity scarcity

 Fig. 6 -b,c), which respectively reduces the Energy-not-Served by 64.1

Wh and 67.5 GWh per 1 GW capacity (see Appendix A.6 for more

etails). Since energy system winterization is the most straightforward

olution against extreme frigid weather, we attach additional impor-

ance to prioritizing the winterization of generation units of specific

ource types in different regions. We perform the quantitative assess-

ent of the effectiveness of facility winterization by source and region

n the electricity scarcity mitigation. The results in Table 1 indicate

he distinct performance of per-GW generation units winterization (see

ppendix A.7 for more details). Based on this, we suggest the priority

f winterization for the disabled nuclear generation units located in the

outh Central, natural gas generation units across ERCOT, coal genera-

ion units in the Coast and wind generation units in the West. 

Given the quantitative assessment of single sustained electricity sup-

ly measure, we investigate the performance of several sustained elec-

ricity supply portfolios and assess the first-aid capability of energy stor-

ge on the basis of sustained sources. We have selected three appro-
8 
riate winterization portfolios based on the foregoing priority analysis,

s shown in Table 2 to provide a quantitative assessment in terms of

dditional Energy-not-Served reduction contributed by both HVDC and

emand response ( Fig. 7 ). First, we find that the performance of HVDC

nd demand response are slightly different but almost equivalent under

ertain cases of winterization portfolio. Second, we find the per-GW per-

ormance of HVDC and demand response decreases as the winterization

apacity increases. For first-aid outage mitigation at the load shedding

eak hour, we focus on load shedding peak clipping by the strategic en-

rgy storage facilities on top of sustained corrective measure portfolios,

ach refers to one of the three winterization portfolios in Table 2 to-

ether with HVDC and demand response of 2 GW. We find that the per-

ormance of per-GWh capacity reduces as the total energy storage ca-

acity increases, or along with increasingly sufficient sustained supply

orrective measures ( Fig. 8 ). To summarize the key findings obtained

n the foregoing quantitative analysis, we find the strong disparity of

eneration units winterization of various source types in multiple re-

ions, and the interdependence of per-unit performance of corrective

easures, based on the quantitative assessment of certain corrective

ortfolios. 

. Concluding remarks 

We develop an open-source and extendable synthetic electric grid

odel that could serve as a platform for broader energy research com-

unity to quantitatively assess the severity and corrective measures of

he 2021 Texas power outage. Simulation results based on this open

ynthetic model are shown to have captured key characteristics of the

eal-world event, demonstrating the model fidelity and uncovering the

ey regional disparity of load shedding. The quantitative assessment of

he corrective measures and portfolios has indicated the strong disparity

f winterization effectiveness among generation units of various types

n multiple regions and the interdependence of per-unit performance

mong corrective measures. It can immediately inform policy makers of

he priority of generation units winterization, the quantitative assess-

ent of certain portfolios on mitigating the blackout and the necessity

f launching systematic investigations on the combined effects of cor-

ective measures, which can potentially be generalized for other regions

round the world which are experiencing the dual challenge of energy

ortfolio transition and extreme weather conditions. 

This open-source, cross-domain, data-driven approach to analyzing

 real-world power grid during extreme events provides a fresh perspec-

ive to allow broader climate and energy research communities to have

igh fidelity characterization of what happened and what could have

een corrected in large power grids, as energy systems around the world

o through profound transformation. The design of this open-source syn-
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Table 1 

Quantitative assessment of generation units winterization by source and region in terms of Energy- 

not-Served reduction (MWh) . Each entry in the table shows the resulting reduction of Energy-not-Served 

(in MWh) for 1 GW generation capacity winterization of each source type in each weather zone. A crossed- 

out entry means that the lack of associated generation outage data renders the evaluation of this certain 

winterization non-applicable. 

Source Type Far West West North East Coast North Central South Central South 

Nuclear — — — — — — 38,205 —

Natural Gas 37,058 12,338 18,993 16,908 25,129 29,236 18,905 23,279 

Coal — — — 266 18,719 1,967 266 5,768 

Wind 6,865 15,178 4,479 5,188 795 — — —

Fig. 7. Additional Energy-not-Served reduction (GWh) by HVDC and demand response given different winterization portfolios. a, b, c, respectively show the 

additional Energy-not-Served reduction contributed by HVDC and demand response that is represented by both bubble size and color, given different total winterized 

generation capacity. Here the winterization portfolios in three cases are determined based on the results in Table 2 . The Energy-not-Served reduction contributed by 

winterization portfolio alone are respectively 266.2 GWh, 467.0 GWh and 628.9 GWh for the case of 10 GW, 20 GW and 30 GW winterized capacity. 

Table 2 

Selective generation units winterization in portfolio 1, 2 and 3 . 

Allocation of Winterized Capacity (MW) in Portfolio 1 

Weather Zone Far West West North East Coast North Central South Central South 

Natural Gas 2000 0 0 0 2000 2000 0 2000 

Coal 0 0 0 0 1000 0 0 0 

Wind 0 0 0 0 0 0 0 0 

Nuclear 0 0 0 0 0 0 1000 0 

Allocation of Winterized Capacity (MW) in Portfolio 2 

Weather Zone Far West West North East Coast North Central South Central South 

Natural Gas 3500 500 1000 1000 2500 3000 1000 2500 

Coal 0 0 0 0 1000 0 0 500 

Wind 500 1000 500 500 0 0 0 0 

Nuclear 0 0 0 0 0 0 1000 0 

Allocation of Winterized Capacity (MW) in Portfolio 3 

Weather Zone Far West West North East Coast North Central South Central South 

Natural Gas 3500 500 1000 1000 2500 3000 1000 2500 

Coal 0 0 0 0 1000 0 0 500 

Wind 500 1000 500 500 0 0 0 0 

Nuclear 0 0 0 0 0 0 1000 0 
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hetic grid can be easily reconfigured, making it very convenient to

onduct further analysis such as HVDC interconnection designs, 2030

rojected profiles, renewable and storage scenarios and integrated sim-

lation along with the Western and Eastern Interconnection. The trans-

arency and extendability of the synthetic grid model will contribute

o a data-driven technology and policy assessment of the energy sys-

em transformation with respect to climate change and extreme weather

vents. 

This model and analysis is a first step towards an open-domain cross-

isplinary approach to fully understand the impact of severe weather

n critical infrastructure systems such as the 2021 Texas power out-

ge. Building upon this open-source model, we hope future research

o address several key challenges in assessing the severity and causes

f the 2021 Texas blackout. First, we notice the wide-ranging natural

as generation capacity outage and de-rating are not simply due to the
9 
reezing temperature, but also to natural gas scarcity and interruption

n the supply chain. It is particularly important to estimate and predict

he impacts of interdependence between two energy infrastructure sys-

ems on the overall energy system reliability and energy market stabil-

ty on both sides under extreme weather conditions. Second, we notice

he price-ceiling-hitting whole-sale electricity price [28] at $9,000 per

W, that lasted for three days ending on February 18. Its quantified im-

acts on generation dispatch and load restoration still remain unknown.

ore investigation is necessary for demonstrating and developing a be-

ign power market mechanism that can encourage improving the reli-

bility and resiliency of power grids. Third, reproducing the reported

requency event at the beginning of blackout event based on reliable

ynamic parameters will provide more fruitful insights into what, how

nd why it happened. Last but not least, the interdependence of per-

nit performance among corrective measures emphasizes the necessity
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Fig. 8. Load shedding peak clipping of energy storage facility. The baseline 

refers to the model without other corrective measures, while the portfolio 1, 2 

and 3 respectively consist of one of three winterization portfolios in Table 2 to- 

gether with HVDC and demand response of 2 GW capacity. 
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f systemic assessment on the combined cost-effectiveness of technical

olution bundles. 

. Data and code availability 

The open-source synthetic grid model and the corresponding dataset

sed for blackout simulation are publicly available on Github [21] . A

utorial and examples for running the code using provided dataset are

lso available in the Github repository. 
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1. Remarks on the gap between actual online and estimated generation 

apacity 

There are two periods that have apparent gap between actual and

stimated generation capacity as shown in Fig. 1 . The first period is

efore 12 a.m. February 15, when the EEA 3 has not been launched.

he reason for this mismatch is that the estimated generation capacity

ncludes all non-outaged generation that is not necessarily online, and

t is normal that generation units are offline according to the dispatch

r scheduled seasonal maintenance. Therefore, the estimated generation

apacity is higher than the actual online generation capacity. The second

eriod is after 12 p.m. February 16, when the gap becomes increasingly

arge. We suspect it could involve several causes, of which the main one

ay be attributed to the generators whose de-rating and outage are not

isclosed in the public report [23] . Besides, the good match between

2 a.m. February 15, and 12 p.m. February 16, is because all available

eneration must be required online under such emergency conditions.

ince we focus on the blackout event period, it is reasonable to use the

stimated generation capacity instead of the actual online capacity to

chieve the most accurate granularity. 

2. Remarks on the mismatch between actual and simulated load shedding 

Here we separate the period from February 15, to February 18, into

hree parts, namely the load shedding rising stage from 0 a.m. to 8 p.m.

ebruary 15, the load shedding stable stage from 8 a.m. February 15, to
10 
2 p.m. February 16, and the load restoration stage from 1 p.m. Febru-

ry 16, to 12 a.m. February 18. During the load shedding rising stage,

ctual and simulated Energy-not-Served are respectively 277,625 MWh

nd 274,316 MWh, of which the relative error is -1.19%. During the

oad shedding stable stage, actual and simulated Energy-not-Served are

espectively 292,778 MWh and 331,210 MWh, of which the relative er-

or is 13.12%. During the load restoration stage, actual and simulated

nergy-not-Served are respectively 428,388 MWh and 324,115 MWh,

f which the relative error is -24.34%. The mismatch between actual

nd simulated total Energy-not-Served is mainly derived from the later

wo stages. The gap during the load shedding stable stage is mostly due

o multiple factors such as system topology, system congestion pattern

nd load shedding strategy (shown in Methods). However, to our best

bility, this is the closest result we can obtain based on only publicly

vailable materials, in which limitations include the low geographical

esolution of generation, demand and outage data as well as lack of

etailed load shedding protocols or event logs in ERCOT internal docu-

entations. The significant mismatch during the load restoration stage

hows that the actual load restoration is slower than the simulated one,

hich may reasonably attribute to the requirements by system tran-

ient stability, unknown load regulation, and unreported technical load

estoration issues that nevertheless are beyond this paper’s scope and

eed more attention for future research. 

3. Remarks on the benchmark of load shedding allocation 

Although we have acquired county-level outage data from Power-

utage.com [25] that show the number of customers with and without

lectricity during the Texas windstorm event, those data are not appro-

riate for simulation purposes as they do not provide actual online and

ffline capacity (in kW/MW). In our simulation, the loads are allocated

nd scaled based on their rated MW capacity and total ERCOT historical

ourly load in each weather zone. While it would be intuitive to draw

 direct relationship between the number of disconnected customer and

he total capacity of those customers, we unfortunately do not have the

ecessary data with high enough resolution to do so as the load data in

ur synthetic network is aggregated and represents the total capacity of

ntire towns which include residential, commerical and industrial load

ltogether. 

4. Relationship between natural gas generation derating and gas supply 

carcity 

Our hypothesis is that all natural gas generation derating is derived

rom the gas supply scarcity and the remaining full outage is derived

rom equipment failures at power plants. The Texas blackout event re-

iew [3] includes some information related to the generation outages,

hich documented that the cumulative generation capacity forced out

hroughout the event is 46,249 MW, cumulative number of generators

utage throughout the event is 356 and cumulative gas generation de-

ated due to supply issues is 9323 MW. Here the ”cumulative capacity ”

ncludes all units that have failed at some point, regardless of whether

t comes back later during the event, as defined as in the 2011 Texas

inter event report [40] . To verify the hyphothesis, we calculate the

umulative generation capacity forced out and cumulative number of

enerators outage based on the generation outage report [23] , which

re respectively 47,946 MW and 316. The relative error between esti-

ated and reported values are 3.67% and 11.23%, which validates the

orrectness of the calculate method. The mismatch between real and

eported cumulative number of generator outages is in line with our ex-

ectation because about 10% of generation plants deny to release of the

utage information to the public [23] . In the same way, we calculate the

umulative generation derating that equals to 10,608 MW, which has

3.78% relative error compared to the reported 9323 MW. To simplify

he problem, we confirm that the proposed hypothesis roughly matches
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he reality which indicates that all natural gas generation derating are

ause by gas supply scarcity. 

5. Incorporating gas supply scarcity into natural gas thermal generation 

interization 

As shown in Appendix A.1 , we are able to roughly separate the

utage/de-rating of generators that are caused by lack of gas supply

nd those that are caused by un-winterized power plant facilities. With

his information, we are able to incorporate gas supply interruption in

ur counterfactual simulations that involve the hypothetical weather-

zation of natural gas generators. We only apply weatherization treat-

ents to generators that are completely out-of-service as shown in the

RCOT unit outage data. For each of those generators, we calculate the

mount of de-rating of other in-service but de-rated generators in the

ame county by assuming that the availability of gas supply is roughly

he same across gas generators in the same county. Hence, even when

hose completely out generators are in service as a result of weather-

zation, they still cannot run at their maximum capacity due to the lack

f gas supply. In counterfactual simulation, the de-rating caused by gas

upply is done by giving additional natural gas generators a de-rating

ultiplier that is determined by the level of de-rating of its neighbouring

enerators in the same county. 

6. Remarks on the performance of HVDC and demand response 

In Fig. 4 b and 4c, the effect of HVDC and demand response on forced

oad shedding is different even for the same total capacity. This differ-

nce is mainly caused by the difference in modelling these two types

f corrective measures. For the modelling of additional HVDC, we have

dded two converter stations into the synthetic network: one in the city

f Roscoe in the West zone representing a DC tie to California, one in

he city of Bryan in the Coast zone representing a DC tie to Florida.

ransmitting power from these two converter station to the rest of the

rid is limited by network congestion, which can result in remote loads

ot getting power from HVDC interconnections and thus they must be

hed even when there is available power supply from the HVDC ties.

n contrast, for the modelling of demand response, we assume the addi-

ional load-capacity is split across the entire network, which is less likely

o cause congestion than concentrated high-capacity energy supply like

he HVDC converter stations. Moreover, since the system demand is still

educed after introducing demand response (but on a voluntary basis),

he lower demand also alleviates the congestion pattern in the network

hich leads to more effective energy use. 

7. Remarks on the performance of winterization of various sources in 

ultiple regions 

Appendix Table A.1 has shown that for the same amount of MW

f weatherization, the difference in effectiveness of different fuel types

an be very different. This difference is mainly caused by the severity of

utage and derating during the event across generator types. Some type

f generators, such as natural gas, are more vulnerable to cold weather

han others and have suffered much higher levels of outage and derating,

hus weatherization treatment would be more effective. In contrast, coal

nd nuclear generators are much less affected by the winter storm (prob-

bly due to their larger size), thus additional weatherization treatment

on’t improve the situation much. In short, the more severe a generator

s affected, the more effective will its weatherization be. Moreover, even

ith complete weatherization, the actual capacity of wind turbines is af-

ected by the wind strength. For example, the wind strength between 9

.m. February 15, and 8 p.m. February 16, is weak, hence during this

ime period wind turbines cannot provide much power even if they are

ully weatherized. 
11 
8. Transmission line upgrade around the interconnection nodes of the 

VDC lines 

In our counterfactual case studies we have added two additional

VDC converter stations that represent ties to California and Florida

o the original synthetic grid network. Each station is capable of trans-

itting at a maximum 2000 MW of real power into the Texas network.

his additional power injection will significantly overload the AC trans-

ission grids near the point of common coupling as their specifications

re not designed to handle the additional power flow. To accommodate

he new resources, we have up-scaled the thermal limit of AC trans-

ission lines in the neighbouring region to avoid line overflowing. We

ave designed a iterative algorithm to upgrade the AC transmission line

ppropriately without disrupting the congestion pattern in the original

etwork. 

We first model the topology of a transmission network as an un-

irected graph, where each bus is represented as a vertex and each

ranch is represented as an edge. Let 𝐵 denote the set of all buses (ver-

ices) in the graph; let 𝐿 = 𝐿 𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐵 denote the set of all branches

edges). The distance between two vertices 𝑖 and 𝑗 is denoted as 𝐷 𝑖𝑗 .

he real power flow in a line 𝐿 𝑖𝑗 is 𝑃 𝑖𝑗 . For each transmission there ex-

sts a thermal rating, 𝑃 max , that dictates the maximum allowed power

ow along the line. The thermal limit is used in OPF formulation to

nsure that the power flow of all lines in the network is lower than

he thermal limit, 𝑃 𝑖𝑗 < = 𝑃 max 
𝑖𝑗 

∀𝑖, 𝑗 ∈ 𝐵. We define the line Load Factor

𝑖𝑗 = 𝑃 𝑖𝑗 ∕ 𝑃 max 
𝑖𝑗 

as the ratio between the line flow to its thermal limit.

ith the addition of a new power source such as an HVDC converter,

he line flow pattern across the network will change to reflect the new

ower flow solution. Most likely, the power flow in the lines that are

lose to the converter station will increase drastically as the capacity of

VDC lines is usually much larger than the power absorption of local

oads in the region and will cause lines to overflow. To upgrade those

ines appropriately, we take an iterative approach to ensure that the load

actor 𝜌 of lines in nearby regions remain unchanged before and after

dding the new HVDC tie with a designated max capacity. The detailed

lgorithm is presented as follow: 

9. Remarks on the simulation environment for this open-source model 

Although the model itself adopts the Matpower format for storing

he bus, generator and topology information, it its not exclusive to Mat-

ower which is based on MATLAB. We chose Matpower to perform our

tudies for this paper but similar works can be done using other plat-

orms when MATLAB is not available. For example, there exists several

ree Python-based software that can also run analysis directly on the

atpower case format such as Pandapower [41] and REISE [42] . In

act, some of our preliminary works on the creation and calibration of

he synthetic model were carried out using REISE without MATLAB. 
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