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THEBIGGERPICTURE As one of the biggest game changers in addressing climate change, the transition to a
carbon-neutral electric grid poses significant challenges to conventional paradigms of modern grid planning
and operation. Artificial intelligence (AI) has the potential to address the challenges posed by large decision-
making scale and increased uncertainty, as many key decision-making mechanisms of grid planning and
operation can be formulated as representative AI problems. However, AI needs to be tailored for power sys-
tem applications in three layers of technology, market, and policy to meet the needs of safety criticality, time
sensitivity, and interpretability.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

The transition toward carbon-neutral electricity is one of the biggest game changers in addressing climate
change since it addresses the dual challenges of removing carbon emissions from the two largest sectors
of emitters: electricity and transportation. The transition to a carbon-neutral electric grid poses significant
challenges to conventional paradigms of modern grid planning and operation. Much of the challenge arises
from the scale of the decision-making and the uncertainty associated with the energy supply and demand.
Artificial intelligence (AI) could potentially have a transformative impact on accelerating the speed and scale
of carbon-neutral transition, as many decision-making processes in the power grid can be cast as classic,
though challenging, machine-learning tasks. We point out that to amplify AI’s impact on carbon-neutral tran-
sition of the electric energy systems, the AI algorithms originally developed for other applications should be
tailored in three layers of technology, markets, and policy.
INTRODUCTION

To grapple with climate change, many countries are striving to

achieve carbon neutrality of their electricity sectors. As an

example, the US aims for 100% electricity generation from

zero-carbon resources by 2035. However, today’s decarboniza-

tion rate in the US electricity sector may not be able to realize

such an aggressive agenda sector.1

Speeding up the carbon-neutral transition of the electricity

sector requires massive integration of renewable generation

at an unprecedented rate. Such large-scale renewable inte-
This is an open access article under the CC BY-N
gration poses significant challenges to the operational para-

digm that today’s grid employs. Reliable operation depends

on both offline planning as well as real-time decision-making,

including monitoring, control, and protection. In the emerging

electricity landscape with deep renewables, due to the

temporally variable nature of renewable generation, the num-

ber of scenarios needing to be considered in planning studies

is extremely large, which creates significant difficulties for grid

planners. Moreover, impactful anomalies in a low-carbon grid,

e.g., oscillations and large voltage deviations, may appear

more often than in the conventional grid. Consequently, there
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Figure 1. A layered vision of energy system digitization
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is a stringent need to monitor and correct these anomalies in

a timely manner. Such anomaly monitoring and correction

require closed-loop decision-making tools that can convert

high-dimensional streaming data into reliable decisions and

apply the decisions to the physical infrastructure in a timely

fashion. However, there is generally a lack of such tools for

most such anomalous scenarios.

The above operational challenges are likely to become

a major bottleneck to accelerating the carbon-neutral

transition of the electricity sector. These challenges may

benefit from artificial intelligence (AI)-based solutions. In

recent years, AI-based applications are transforming all as-

pects of human society and endeavors.2 In many successful

applications, AI algorithms make decisions based on data

without requiring detailed models. This is a highly desirable

feature for future power grid operation since accurate physical

models of phenomena based on weather or consumer

behavior are likely either unknown or complex. On the

other hand, as will be seen in what follows, some grid

operational needs can be translated into classic AI problems.

However, this will require the translation of the potential of AI

into solutions at full scale that can empower the ambitious

carbon-neutral transition in the electricity grid3,4 under the

additional requirements of safety, time sensitivity, and inter-

pretability.

While several survey papers2,5,6 review the applications of AI in

electric energy systems and point out the research directions of

this field from a technological viewpoint, how to unleash the po-

wer of AI in decarbonizing the electricity sector is a complex

problem in a broader social-economic-technological space.

This perspective argues that general-purpose AI needs to be

carefully tailored in three layers before it can be applied in

safety-critical grid infrastructure applications. These three layers

include technology, markets, and policy, as summarized in

Figure 1.

The rest of this perspective is organized as follows. First, we

briefly introduce key decision-making mechanisms associated
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with the operation of modern power grids. Then, we highlight

the connection between grid operation and AI. Finally, we elab-

orate on the tri-layer tailoring of AI for the carbon-neutral transi-

tion of the electric grids.

THE ROLE OF AI IN CARBON-NEUTRAL TRANSITION OF
POWER GRID

This section elaborates on AI’s potential for addressing chal-

lenges in the carbon-neutral transition of the electricity energy

systems. We provide a brief overview of power grid operation

(see a detailed overview of power system basic functionalities

in the review paper by Xie et al.6) and highlight the decision-mak-

ing processes (Figure 2). Then, we present the connection be-

tween these decision-marking processes and representative

problems in the AI field.

Overview of modern power grid operation
The stringent balance requirement between electricity supply

and demand in the modern grid is accomplished by a two-stage

strategy, which consists of offline planning and real-time opera-

tion (the grid operation described here is for transmission

systems; the decision-making processes in current distribution

system operation generally are a subset of those in transmission

systems). Offline planning includes generation and transmission

planning and several forward financial markets. Generation plan-

ning leverages reliability studies to decide when and how much

additional generation capacity should be added over a planning

horizon of several years.7 The objective of transmission planning

is to ensure that the transmission lines deliver electricity from the

generators to the loads. In the transmission planning stage, sys-

tem planners scrutinize the grid behavior at multiple timescales

by comprehensively conducting physical model-based simula-

tions for future possible scenarios based on past operational

experience. Such a procedure is called system security analysis.

Once the power grid is physically established, system operators

can leverage financial markets, such as day-ahead, reserve,



Figure 2. Decision-making modules of
power (transmission) system operation
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and capacity markets, for enhancing the grid’s economical effi-

ciency. Unit commitment (UC) and economic dispatch (ED) are

key modules that support energy trading in a day-ahead market.

The decision-making in real-time operation leverages real-

timemeasurements,8 e.g., those obtained over supervisory con-

trol and data acquisition (SCADA), and phasor measurement

units (PMUs), in a hierarchical manner. At the global level, the en-

ergy management system (EMS) at a control center pre-pro-

cesses raw measurements from the grid and provides system

operators with monitoring and control functionalities. System

security analysis is also conducted based on the most recent

measurements. At the local level, grid components are regulated

and protected by local control and protection apparatus. The

economic efficiency of the grid is ensured by a real-time (spot)

market. The spot electricity prices are determined by solving

ED problems based on the most recent measurements and

short-term load forecasts.

Background of grid operation with AI support
This subsection establishes connections between the decision-

making modules of grid operation and the three representative

formulations of AI problems, i.e., supervised, unsupervised,

and reinforcement learning.

Supervised learning for prediction and detection

Given a set of vectors with labels, a supervised-learning method

is used for constructing the relationship between the vectors and

their labels. Formally, suppose that a procedure takes vector X

as input and generates a label vector Y, where the label can be

either numerical or categorical. The elements of X are called

‘‘features.’’ The supervised-learning method aims to construct

a function f that mapsX to Y by learning fromN historical records

of input-output pairs generated from the procedure, i.e.,

{(x1,y1),(x2,y2),.,(xN,yN)}. When a new input, say, xN+1, appears,

the resulting yN+1 is expected to be approximated by f(xN+1) with

reasonable accuracy. If the number of options for Y is finite, the

problem is called one of classification; if continuous variables

constitute the output vector Y, the problem is called regression.9

Many decision-making modules for grid operation involve

classification and regression with clear definitions of the input

vector X and the response vector Y. For example, it can be

shown that battery cycle life can be predicted by linear regres-
sion with properly selected input fea-

tures.10 Another example concerns grid

online stability assessment that aims to

determine if the system is stable given

real-time measurements. This is a stan-

dard classification problem, with the

measurements as inputs and a binary var-

iable (1: stable or 0: unstable) as output.

Conventional stability assessment relies

heavily on time-consuming simulations

that cannot be carried out in real time. It

has been reported that a convolution neu-

ral network (CNN) can quickly achieve
high accuracy.11 Table 1 shows other AI adoption examples

with inputs and outputs clearly defined in the context of power

grids. Researchers are striving to build state-of-the-art ma-

chine-learning benchmarks for several challenging use cases

with open datasets.12

Unsupervised learning for modeling high-

dimensional data

Unsupervised learning addresses samples without labels. Sup-

pose that only N samples {x1,x2, .,xN} are available, without

any labels. Unsupervised learning aims to achieve one of the

following objectives: (1) clustering aims to find samples that

share similarities; (2) density estimation aims to determine the

probability distribution governing the given samples (explicitly

or implicitly) and to generate new samples with the same proba-

bility distribution as the given samples; and (3) dimensionality

reduction attempts to project the high-dimensional samples

into a low-dimensional space that allows for visualization or

easily discovering irregularities in the samples.

The three objectives above are relevant in addressing some

challenges associated with the grid. For example, the offline

planning problem requires realistic scenarios, including load

data conditioned on weather and the season. Generating the

scenarios can be formulated as a density estimation problem,

which can then generate new scenarios with the same probabil-

ity density as historic scenarios. The density estimation problem

can be solved by a generative adversarial network (GAN).21 In a

distribution system, a utility company divides its customers into

several representative clusters in order to understand cus-

tomers’ behaviors.22 This problem can be solved by various

clustering algorithms, such as k-means.22 In addition, deci-

sion-making in the control center often involves high-dimen-

sional data collected from a wide area of the grid. It can be

shown that the high-dimensional grid data can be projected

into a low-dimensional space by principal-component analysis

(PCA), allowing for efficient data storage and early event detec-

tion.23 Table 2 maps some power system challenges to the three

goals of the unsupervised learning.

Reinforcement learning

The goal of reinforcement learning (RL) is to make decisions by

interacting with an environment under study.9 Generally, an RL

algorithm includes the following elements: states, actions, a
Patterns 3, December 9, 2022 3



Table 1. Power grid applications with supervised-learning formulation

Challenge Application Input: X Output: Y

Load/renewable forecasts short-term forecast13 data on energy and/or weather13 photovoltaic (PV) forecasts13

Reliability studies fast state evaluation,14 state enumeration15 bus generation info,14 weather15 success/failure status of buses,14

renewable generation15

Security analysis external grid modeling,16 contingency

screening17
interface voltage,16 bus flow

injection17
interface power flow,16 bus

voltage and security index17

Unit commitment and

economic dispatch

binding constraint prediction,18 constrain

convex relaxation19
scenarios,18 3-phase voltage19 binary variable for each

constrain,18 power flow19

Monitoring anomaly classification,20 stability

assessment,11 battery cycle life prediction10
streaming data,11,20 info. from

discharge voltage curves and

capacity fade curves10

binary indicator,11 event type,20

battery cycle life10
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policy, and a reward function. A state sk at time k can be

measured from the environment, and an action ak can be applied

to the environment at time k, resulting in a new state sk+1. The

state transition from sk to sk+1 is determined by the environment,

whose governing laws are either unknown or complex. The ac-

tion and the resulting state transition lead to a real-value reward

assigned by a reward function R(sk,ak,sk+1). A policy p maps a

state to an action. RL searches for an optimal policy that

maximizes the total reward over a planning horizon. Possible ap-

plications of RL in power systems include model calibration,26

demand modeling,27 energy trading,28 reactive power control,29

tap changer control,30 and relay timer setting in distribution sys-

tems.31 Table 3 identifies the standard RL ingredients for each of

the algorithms.

A THREE-LAYERED APPROACH TO TAILOR DESIGN AI
FOR CARBON-NEUTRAL ELECTRIC GRIDS

Given the safety criticality, time sensitivity, and desire for inter-

pretability in the electric power system operation, we postulate

a three-layered approach to tailor AI for power system applica-

tions, namely technology, markets, and policy. At each layer,

the domain-specific constraints require AI development to be

suitably designed; innovations in AI also shed light on how

each layer can be further evolved by taking full advantage of

future developments.

At the technology layer
Power grid operation entails complicated interactions of millions

of physical components. The decision-making processes over

the electricity infrastructure typically employ the mathematical

descriptions of these interactions, which in turn are derived

from first principles, such as Newtonian mechanics and electro-

dynamics. The mathematical descriptions of these processes
Table 2. Power grid applications with unsupervised-learning formu

Challenge Application S

Load/renewable

Forecasts

scenario generation21 d

Security analysis load modelling,22 generator

coherency identification24
c

s

Monitoring anomaly detection,23 localization25 s
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may possess some properties that may not be straightforward

to discern, even for power engineers. For example, high-dimen-

sional data concerning electrical variables, such as measure-

ments of voltage and current over the power grid, may possess

a low-rank structure. This is because electrical variables at

different locations are correlated by transmission/distribution

lines. The hidden properties of the nature of the power grid phe-

nomena can guide the selection/design of AI algorithms to

address the operational challenges facing power grids. One

can consider the localization of the source of the forced oscilla-

tion as an example, which consists of the determination the loca-

tion of anomalous sources given the measurements over the

grid. At first glance, the source localization problem seems to

be closely related to a typical supervised classification problem

in that we aim to classify the locations into two categories, i.e.,

locations close to the anomaly source versus locations far

away from the source. The performance of the supervised-

learning algorithm generally depends heavily on the size and

data quality of the training sets. However, it is generally chal-

lenging to generate a large, high-quality training set for large-

scale power systems. By recognizing the low-rank property of

the sensor measurements over the grid, and the sparsity prop-

erty of anomalous sources, one can choose an unsupervised

learning algorithm called robust PCA (RPCA) to pinpoint the

source. Such an algorithm does not require a large amount of

training data and exhibits promising performance.25 While it is

well accepted that domain knowledge can help identify applica-

tion scenarios of general-purpose AI algorithms, as well as to

select useful features feeding the AI algorithms, the structural

properties that are hidden under the complicated mathematical

descriptions of the electricity infrastructure should be exploited

at all stages of development of the AI algorithms for grid applica-

tions in order to obtain robust, interpretable AI-powered tools for

the grid applications.
lation

amples Goal

ata of energy and weather21 density estimation21

ustomer energy data,22

ynchrophasor data24
clustering22,24

treaming data23,25 dimensionality reduction23,25



Table 3. Power grid applications with reinforcement-learning formulation

Challenge Application State sk Action ak Policy Goal R

Security analysis model calibration,26

demand modeling27
model parameters,26

load fraction27
model parameter modification,26

load fraction modification27
response mismatch

minimization26,27

Unit commitment and

economic dispatch

energy trading28 past wholesale price-

quantity pairs and retail

demand-price pairs28

retail price28 profit maximization of a

load serving entity28

Control reactive power control,29

tap changer control30
binary security status,29

voltage and tap ratio30
tap ratio,29,30 reactive power

compensation29
flow/voltage tracking29,30

Protection relay timer setting in

distribution systems31
line current, breaker status,

and timer value31
timer setting31 minimizing

misoperation rate31
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At the markets layer
One of major AI applications in electricity markets is to accel-

erate large-scale optimization. For instance, UC and ED, which

are fundamental problems in electricity markets, face critical

challenges due to increasing uncertainty caused by deepening

penetration of renewables. Several data-driven, scenario-based

optimization approaches have been proposed to efficiently

obtain optimal solutions that explicitly provide the probability

that the solution is feasible.32–35 Another machine-learning-

based approach has been proposed to identify active sets of

safety constraints to obtain optimality more efficiently.36 Addi-

tionally, the advances in AI can potentially help to optimize the

allocation of market investment resources. As an example, ma-

chine-learning-based demand responses from just a few tar-

geted locations have been found to be effective in mitigating

price volatility. Therefore, resources for demand response pro-

grams can be strategically concentrated in targeted areas, rather

than one size fits all, to achieve the most effective social welfare

improvements.37

Although there have been many studies showing the potential

of AI technology in improving the reliability and economy of elec-

tric grids, the lack of appropriate market design is holding it

back. For example, an RL-based framework has been proposed

to provide voltage regulation via reactive power support in

distribution grids with deep solar photovoltaic penetration.38

However, the lack of auxiliary markets in distribution grids hin-

ders the realization of economic revenue from providing reactive

power support, thus weakening the economic impacts of AI

techniques. Therefore, changes to the design of the electricity

market are imperative to accommodate technological innovation

and translate advances in AI into reality.

At the policy layer
Electric grids are heavily regulation and policy driven. With the

increasing complexity of electric grids, AI ushers in unique op-

portunities to integrate interdisciplinary knowledge and leverage

heterogeneous data to provide effective insights for policy mak-

ing. For example, a machine-learning-based approach has been

proposed to comprehend the correlation between electricity

consumption, number of COVID-19 cases, level of social

distancing, and degree of commercial activity during the

COVID-19 pandemic using cross-domain datasets. It can be

used as an indicator for predicting changes caused by such an

unprecedented event.39 As another example, the design of green

energy policies, such as encouraging the adoption of household
rooftop solar panels, will require insights from AI techniques. An

example is a machine-learning-based solar deployment data-

base in the US40 to improve energy justice and equity for diverse

populations and analyze social impacts on job creation. An AI-

informed policy design would be a prudent approach to driving

the carbon-neutral transition in the electricity sector. On the

other hand, new regulations must be developed to regulate AI

applications in such a critical infrastructure system to ensure reli-

ability and privacy. For example, an AI application must possess

some key properties, such as interpretability, to facilitate further

inspection and investigation by human operators. The increasing

demand for data acquisition in power grids also requires new

regulations on data privacy and data availability and regulating

data acquisition processes to protect the privacy of data owners

while maximizing the utility of data.
CONCLUDING REMARKS

Energy system decarbonization is one of the most challenging

and exciting areas of research and innovation for the 21st cen-

tury. This perspective presents a view on how digitization and

AI could play a crucial role in the carbon-neutral transition of

the energy sector. We argue that higher impact of digitization

and AI in the electric energy industry could be achieved through

a ‘‘three-layered’’ integrated approach that encompasses tech-

nology, markets, and policy layers. Domain-tailored digitization

and AI will draw upon unique specifications in all three layers in

the energy sector while providing fertile ground for use-inspired

innovations in methodology and algorithms. There are several

actionable recommendations that would potentially bring the en-

ergy and AI communities closer together.

d To involve more power domain-agnostic researchers from

the broader AI community, the energy and power commu-

nity should develop a suite of problem formulations that are

accessible to general AI researchers. These problems

should be motivated by real-world needs and have the

potential to engage the AI community. As an example,

the workshop on ‘‘Learning to run a power network

(L2RPN)’’ provides a platform for such problem definition

and solution.41

d A suite of open, cross-domain datasets that are well

benchmarked and labeled for representative power sys-

tem operating conditions should be developed and shared

with the broader AI community. A possible example is an
Patterns 3, December 9, 2022 5



ll
OPEN ACCESS

6

Perspective
open-source, cross-domain dataset39 that includes elec-

tricity consumption, public health, andmobility data, which

was released for broader communities to understand the

short-run impact of COVID on the US electricity sector in

a data-driven manner.

d On the educational front, both the power/energy commu-

nity and the AI/digitization community should provide

use-inspired cases and tools that will be accessible to un-

dergraduates in both areas. Helping students become

‘‘bilingual’’ in both energy and AI terms would be impor-

tant. Examples include data science andmachine-learning

courses for power systems in universities, such as Texas

A&M University,42 University of Texas, Austin,43 and

University of Washington, Seattle.44
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